DOI: https://doi.org/10.35681/1560-9189.2020.22.2.211249

Використання халькогенідних склоподібних напівпровідників для створення мікро- та нанорозмірних структур

V. V. Petrov, A. A. Kryuchуn, V. M. Rubish, S. A. Kostyukevуch, P. E. Shepeliavyi

Анотація


Представлено результати аналізу методів формування мікро- та нанорозмірних елементів на тонких плівках халькогенідних склоподібних напівпровідників, що базуються на численних експериментальних даних, і визначено можливості їхнього застосування для створення оптичних дифракційних елементів.


Ключові слова


наноструктури; халькогенідні склоподібні напівпровідники; неорганічні резисти; плазмони; ближнє поле

Повний текст:

PDF

Посилання


Achimova E. Direct surface relief formation in nanomultilayers based on chalcogenide glasses. A review. Surface Engineering and Applied Electrochemistry. 2016. Vol. 52. No. 5. P. 456–468. https://doi.org/10.3103/S1068375516050021.

Petrov V.V., Kryuchyn A.A., Rubish V.M., Kostyukevych S.O. Neorhanichna fotolitohrafiya. Kyiv: IMF NANU, 2007. P. 196.

Isbi Y., Sternklar S., Granot E., Lyubin V., Klebanov M., Lewis A. Sub-wavelength optical recording on chalcogenide glassy film. Optics communications. 1999. Vol. 171. No. 4/6. P. 219–223. https://doi.org/10.1016/S0030-4018(99)00541-6.

Tanaka K. Photoinduced structural changes in amorphous semiconductors. Semiconductors. 1998. Vol. 32. P. 861–866. https://doi.org/10.1134/1.1187473

Kovalskiy A., Vlcek M., Waits C.M., Dubey M. Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. J. Micro/Nanolith. MEMS MOEMS. 2009. Vol. 8. No. 4. P. 043012.

Kolobov A.V., Tominaga J. Chalcogenide glasses in optical recording:recent progress. Opt. and Advanc. Mat. 2002. Vol. 4. No. 3. P. 679–686.

Petrov V.V., Kryuchyn A.A., Shanoylo S.M., Belyak Ye.V. Nadshchilnyy optychnyy zapys informatsiyi. Kyiv: IPRI NANU, 2009. P. 320.

Kokenyesi S., Ivan I., Takats V., Palinkas J., Biri S., Szabo I. Formation of surface structures on amorphous chalcogenide films. J. Non-Cryst. Sol. 2007. Vol.353. P. 1470–1473. https://doi.org/ 10.1016/j.jnoncrysol.2006.09.064

Vlcek M., Jain H. Nanostructuring of chalcogenide glasses using electron lithography. J. Opt. and Advanc. Mat. 2006. Vol. 8. No.6. P. 2108–2111.

Kryuchyn A.A., Petrov V.V., Rubish V.M., Trunov M.L., Lytvyn P.M., Kostyukevich S.A. Formation of Nanoscale Structures on Chalcogenide Films. Phys. Stat. Solidi B. 2017. P. 1700405. https://doi:10.1002/pssb.201700405

Indutny Y.Z., Lukanyuk M.V., Mynko V.Y. y dr. Optycheskaya zapys mykro- y nanorazmernkh relefnkh struktur na neorhanycheskykh rezystakh Ge-Se. Reyestratsiya, zberihannya i obrob. danykh. 2013. T. 14. No 5. P. 3–12.

Kryuchyn A.A., Petrov V.V., Kostyukevych S.O. High density optical recording in thin chalcogenide films. J. Opt. and Advanc. Mat. 2011. Vol. 13. No. 11–12. P. 1487–1492.

Helseth L.E. Breaking the diffraction limit in nonlinear materials. Optics Communications. 2005. Vol. 256. No. 4–6. P.435–438. https://doi.org/10.1016/j.optcom.2005.06.074

Noach S., Manevich M., Eisenberg N.P., Davidov D., Klebanov M., Lubin V. Optical near-field lithography in halcogenidefilms. Optical Materials. 2006. Vol. 28. P. 1054–1057. https://doi.org/10.1016/j.optmat.2005.06.004

Petrov V.V., Kryuchyn A.A., Kunytskyy Yu.A., Rubish V.M., Lapchuk A.S., Kostyukevych S.O. Metody nanolitohrafiyi. Kyiv: Nauk. dumka, 2015. P. 262.

Wu Y., Chong C.T. Theoretical analysis of a thermally induced superresolution optical disk with different readout optics. Appl. Opt. 1997. Vol. 36. P. 6668–6682. https://doi.org/10.1364/AO. 36.006668

Tominaga J., Nakano T., Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Appl. Phys. Lett. 1998. Vol. 73. P. 2078. https://doi.org/10.1063/1.122383

Shi L.P., Chong T.C., Yao H.B., Tan P.K., Miao X.S. Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer. J. Appl. Phys. 2002. Vol. 91. P. 10209. https://doi.org/10.1063/1.1476068

Liu Q., Fukaya T., Tominaga J., Iwanabe Y., Shima T. Optical Properties of Metal-Oxide Films in Super-RENS. Jap. J. Appl. Phys. 2005. 44. 1. Nо. 7A. P. 5156–5163. https://doi.10.1143/JJAP.44.5156

Fukaya T., Buchel D., Shinbori S., Tominaga J., Atoda N. Micro-optical nonlinearity of a silver oxide layer. J. Appl. Phys. 2001. Vol. 89. P. 6139. https://doi.10.1063/1.1365434

Chu T.C., Liu W.-Ch., Tsai D.P. Enhanced resolution induced by random silver nanoparticlesin near-field optical disks. Opt. Commun. 2005. Vol. 246. P. 561–567. https://doi.10.1016/ j.optcom.2004.11.001

Kravets V.G., Kabashin A.V., Barnes W.L., Grigorenko A.N. Plasmonic Surface Lattice Resonances. A Review of Properties and Applications.Chem Rev. 2018. Vol. 118. No. 12. P. 5912–5951. https://dx.doi.org/10.1021%2Facs.chemrev.8b00243

Kravets A.F., Borodinova T.I., Kravets V.G. Strong plasmon enhancement of magneto-optical Kerr rotation in Co-AlO nanogranular films coated with gold nanoparticles. J. Optical Society of America B. 2016. Vol. 33. No. 3. P.e302-308.s https://dx.doi.org/10.1364/JOSAB.33.000302

Trunov M.L. Light-induced mass transport in amorphous chalcogenides: Toward surface plasmon-assisted nanolithography and near-field nanoimaging. / M.L. Trunov, P.M. Lytvyn, P.M. Nagy, A. Csik, V.M. Rubish, S. Kokenyesi // Phys. Stat. Solidi (B) Basic Research. – 2014. – Vol. 251. – 7. – P. 1354–1362. https://doi.org/10.1002/pssb.201350296

Hartland G.V., Besteiro L.V., Johns P., Govorov A.O. What’s so Hot about Electrons in Metal Nanoparticles. ACS Energy Letters. 2017. Vol. 2. No. 7. P. 1641–1653. https://doi.10.1021/acsenergylett. 7b00333

Stipe B.C., Strand T.C., Poon C.C., et.al. Magnetic Recording at 1.5 Pb m– 2 Using an Integrated Plasmonic Antenna. Nat. Photonics. 2010. No. 4. P. 484–488. https://doi.10.1038/nphoton. 2010.90.

Sojfer V.A., Kotljar V.V., Doskolovich L.L. Difrakcionnye opticheskie jelementy v ustrojstvah nanofotoniki. Kompjuternaja optika. 2009. T. 33. No 4. P. 352–368.

Wong S., Deubel M., Perez-Willard F., et.al. Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses. Adv. Mater. 2006. Vol. 18. P.265. https://doi.10.1002/adma.200501973

Hafner M., Pruss C., Osten W. Direct writing. Recent developments for the making of diffractive optics. Optics & Photonics. 2011. No. 4. P. 40–44.

Bowen J.P., Michaels R.L., Blough C.G. Generation of large-diameter diffractive elements with laser pattern generation. Appl. Opt. 1997. Vol. 36. P.8970–8975. https://doi.10.1364/AO.36.008970

Koronkevich V.P., Korolkov V.P., Poleshhuk A.G. Lazernye tehnologii v difrakcionnoj optike. Avtometrija. 1997. No 6. P. 5–25.

Roeder M., Guenther T., Zimmermann A. Review on Fabrication Technologies for Optical Mold. Inserts Micromachines (Basel). 2019. Vol. 10. No. 4. P. E233. https://doi.10.3390/mi10040233

Volkov A.V., Kazanskij N.L., Kostjuk G.F., Kostjukevich S.A., Shepeljavyj P.E. Formirovanie mikrorelefa DOJe s ispolzovaniem halkogenidnyh stekloobraznyh poluprovodnikov. Kompjuternaja optika. 1999. No 19. P. 129–131.

Kostyukevych S., Shepeliavyi P., Svechnikov S., et al. Formation of diffractive optical elements using inorganic laser lithography. Data Rec., Storage and Processing. 2002. Vol. 4. No.3. P. 3–12.

Koronkevich P., Kiryanov V., Korolkov V., et. al. Fabrication of diffractive optical elements by laser writing with circular scanning. Proc. SPIE. 1994. Vol. 2363. P. 290–298.

Perlo P., Sinesi S., Ripetto M., Uspleniev G. The use of a circular laser recording system for the manufacture of halftone patterns of diffractive optical elements based on DLW glass plates. Computer Optics. 1997. 17. P. 85–97.

Gil D., Menon R., Smith H.I. Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching. J. Vacuum Science & Technology B. 2003. Vol. 21. P. 2956. https://doi.10.1116/1.1619957

Takats V., Miller F., Jain H., Cserhati C., Kokenyesi S. Direct surface patterning of homogeneous and nanostructured chalcogenide layers. Phys. Stat. Solidi C. 2009. Vol. 6. Nо. S1. P. 83–85. https://doi.10.1002/pssc.200881347

Takats V., Trunov M.L., Vad K., Low-temperature photo-induced mass transfer in thin As20Se80 amorphous films. Materials Letters. 2015. Vol. 160. P. 558–561.

Trunov M.L., Rubish V.M., Lytvyn P.M., et. al. Photoinduce mass-transport in amorphous chalcohenides. Proc. XVI ntern. conf. «Physics and technology of thin films and nanosystems» ICPTTFN-XVI». Ivano-Frankivsk, Ukraine. 2017. P. 314.

Korotun A.V., Koval A.O., Kryuchyn A.A., Rubish V.M., Petrov V.V., Titov I.M.. Nanofotonni tekhnolohiyi. Suchasnyy stan i perspektyvy. Uzhhorod: FOP Sabov A.M., 2019. P. 482.