DOI: https://doi.org/10.35681/1560-9189.2020.1.1.207717

Прямий лазерний запис мікрорельєфних структур в халькогенідних склах лазерним променевим записувачем мастер-дисків

V. V. Petrov, A. A. Kryuchyn, S. O. Kostyukevych, V. M. Rubish

Анотація


Проаналізовано метод створення мікрорельєфних фазових елементів для діфракційної оптики та офтальмології. Прямий лазерний запис за допомогою лазерного променевого записувача для мастер-дисків є ефективним методом для створення пласких мікрорельєфних фазових елементів в тонких плівках халькогенідних напівпровідників, де відбуваються фото-структурні перетворення під дією лазерного випромінювання.

Ключові слова


прямий лазерний запис; мікрооптичні елементи; халькогенідні напівпровідники; фотоструктурние перетворення; станція лазерного запису

Повний текст:

PDF (English)

Посилання


Nikonorov A., Petrov M., Bibikov S., Yakimov P., Kutikova V., Yuzifovich Y.,. Morozov A, Skidanov R., Kazanskiy N. Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks. IEEE Journal of selected topics in applied earth observations and remote sensing. 2018. P. (99):11.

She A., Zhang S., Shian S., Clarke D., Capasso F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science advances. 2018. 4. No. 2. Article number Eaap 9957.

Gale M. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Optical Engineering. 1994. 33. Р. 3556–3564.

Hafner M., Pruss C., Osten W. Laser direct writing. Recent developments for the making of diffractive optics. Optik & Photonik. December 2011. No. 4. P. 40–44.

Mohammad N., Meem M., Shen B., Wang P., Menon R. Broadband imaging with one planar diffractive lens. Scientific Reports. 2018. 8. Article number 2799.

Braun A., Maier S. Versatile Direct Laser Writing Lithography Technique for Surface Enhanced Infrared Spectroscopy Sensors. ACS Sensors. 2016. 1. Р. 1155–1162.

Schroeter S., Vlček M., Poehlmann R., Fišerová A. Efficient diffractive optical elements in chalcogenide glass layers fabricated by direct DUV laser writing. Journal of Physics and Chemistry of Solids. 2007. 68. Р. 916–919.

Petrov V., Kryuchin A., Kostyukevich S., Rubish V. Inorganic Photolithography. Kyiv: Institute for Physics of Metals, NAS of Ukraine, 2007. 196 с.

Almeida J., Paula K., Arnold C., Mendonça C. Sub-wavelength self-organization of chalcogenide glass by direct laser writing. Optical Materials. 2018. 84. Р. 259–262.

Stronski A.V., Schepeljavi P.E., Kostyukevych S.A., Romanenko P.F., Robur I.I., Indutnyi I.Z. Fabrication of Fresnel lenses and other optical elements with the help of inorganic resists. Proc. SPIE. 2213. Nanofabrication Technologies and Device Integration (28 July 1994); https://doi.org/10.1117/ 12.180953

Paniagua-Dominguez R., Yu Y.F., Khaidarov E., Choi S., Leong V., Bakker R., Liang X., Fu Y., Valuckas V., Krivitsky L., Kuznetsov A. A Metalens with a Near-Unity Numerical Aperture. Nano Letters. 2018. 18. Р. 2124–2132.

Swanson G. Binary Optics Technology: The Theory and Design of Multi-level Diffractive Optical Elements. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a213404.pdf

Jasinevicius R., Pizani P., Cirino G.A. Ultraprecision machining of diffraction optical elements on soft semiconductor crystal. The International Journal of Advanced Manufacturing Technology. 2015. 77. 1154-1163.

Kryuchyn A. High-precision micro-prism structures and prospects for their large-scale application. Bulletin of the National Academy of Sciences of Ukraine. 2018. 4. Р. 45–53.

Khorasaninejad M., Chen W., Devlin R., Oh J., Zhu A., Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016. 352. Р. 1192–1194.

Nikonorov A., Bibikov S., Myasnikov V., Yuzifovich Y., Fursov V. Correcting color and hyperspectral images with identification of distortion model. Pattern Recognition Letters. 2016. 83. Part 2. Р. 178–187.

Zhang Q., Lin H., Jia B., L. Xu, M. Gu. Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses. Optics express.2010. 18. 6885.

Zakery A., Elliott S.R. Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Crystalline Solids. 2003. 330. Р. 1-12

Kostioukevitch S., Shepeljavij P., Indutnyi I., Stronski A., Stetsun A. Formation of optical disk direction paths and optical master disks with the help of inorganic resists. Proc. SPIE 2026, Photonics for Processors, Neural Networks, and Memories (9 November 1993); doi: 10.1117/12.163608.

Kostyukevych S., Shepeliavyi P., Svechnikov S., Moskalenko N., Tomchuk V., Koptyuh A., Volkov A., Kazansky N., Kostyuk G. Formation of diffractive optical elements using inorganic laser lithography. Data Recording, Storage and Processing. 2002. Vol. 4. No. 3. P. 3–12.

Kostyukevych S., Shepeliavyi P., Moskalenko R., Wenger V., Petrov V., Kryuchyn A., Shanoilo S. The study of the mastering of compact discs on inorganic photoresists. Data Recording, Storage and Processing. 2001. Vol. 3. No. 4. P. 5–14.

Kryuchyn A., Petrov V., Rubish V., Trunov M., Lytvyn P., Kostyukevich S. Formation of anoscale Structures on Chalcogenide Films. Physica status solidi (b). 2017. 255. Article number 201700405. DOI: 10.1002/pssb.201700405.

Indutny I., Kryuchin A., Borodin Yu., Danko V.A., Lukaniuk M.V., Minko V.I., Shepelyavy P.E., Gera E.V., Rubish V.M. Optical Recording of Micro- and Nano- Relief Structures on Inorganic Resists Ge-Se. Data Recording, Storage and Processing. 2013. Vol. 15. No. 4. P. 3–14.

Kryuchyn. A., Petrov V., Rubish V., Lapchuk A., Kostyukevych S., Shepeliavyi P., Kostyukevych K. High-speed optical recording in vitreous chalcogenide thin films. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. 17(4). P. 389–393.

Malinauskas M., Zukauskas A., Purlys V., Gaidukeviciute A., Balevicius Z., Piskarskas A., Fotaki C., Pissadakis S., Gray D., Gadonas R., Vamvakaki M., Farsari M. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Optics and Lasers in Engineering. 2012. 50. P. 1785–1797.

John-Wallace. Metasurface Optics: Broadband achromatic metalens focuses all polarizations. URL: https://www.laserfocusworld.com/home/contact/16572305/

Schwarz C., Williams H., Grabill C., Lewis A., Kuebler S., Gleason B., Richardson K., Pog-rebnyakov A., Mayer T., Drake C., Rivero-Baleine C. Processing and fabrication of micro-structures by multiphoton lithography in germanium-doped arsenic selenide. Proc. of SPIE. 2014. 8974. 89740P–1–6.

Koronkevich P., Kiryanov V., Korol’kov V., Poleshchuk A., Cherkashin V., Churin E., Kharissov A. Fabrication of diffractive optical elements by laser writing with circular scanning. Proc. SPIE. 1994. 2363. P. 290–298.

Perlo P., Sinesi S., Ripetto M., Uspleniev G. The use of a circular laser recording system for the manufacture of halftone patterns of diffractive optical elements based on DLW glass plates. Computer Optics. 1997. 17. P. 85–97.

Poleshuk A., Korolkov V., Bessmeltsev V., Nikonorov Yu., Karvan A., Verkhogliad A. Precision laser technological complex for the production of scales, grids, photo masks and synthesized holograms based on laser three-dimensional micro- and nano-processing. URL: http://www.holography-journal.com/wp-content/uploads/2013/03/071.pdf

Wang Y., Zhang W., Yang Z., Xiong X., Xia L., Gao M., D. Zhang, Wang D., Yuan J. Fabrication of large diffractive optical elements by laser direct writing IEEE International Conference on Manipulation. Manufacturing and Measurement on the Nanoscale (3M-NANO) (18-22 July 2016, Chongqing). Chongqing, 51–54. 2016. DOI:10.1109/3M-NANO.2016.7824973.