DOI: https://doi.org/10.35681/1560-9189.2015.17.2.100321

Нейронні та мережі Байєса у задачі аналізу кредитних ризиків

N. V. Kuznietsova, P. I. Bidyuk

Анотація


Робота присвячена аналізу дефолтів позичальників кредиту фінансової установи з використанням трьох типів математичних моделей і фактичних даних з банківської установи. Представлено результати побудови та практичного застосування моделей у формі нейронної мережі зворотного розповсюдження, статичної байєсівської мережі та інтегрованої моделі, яка складається з двох указаних структур. Виконано ряд обчислювальних експериментів стосовно прогнозування дефолтів позичальників кредитів з використанням кожноїпобудованої моделі окремо, а також комбінованої (інтегрованої) моделі. Показано, що кращий результат на використаних вибірках даних забезпечує комбінована модель, і встановлено, що для розв’язання задачі прогнозування дефолтів клієнтів банку доцільно застосовувати множину різних моделей, інтегроване використання яких дає можливість підвищити якість оцінок прогнозів.

Ключові слова


інтегрований підхід; нейронні мережі; мережі Байєса; кредитні ризики

Повний текст:

PDF