Перспективи оптичної пам’яті

Автор(и)

  • В. В. Петров Інститут проблем реєстрації інформації НАН України, Ukraine
  • А. А. Крючин Інститут проблем реєстрації інформації НАН України, Ukraine
  • Є. В. Беляк Інститут проблем реєстрації інформації НАН України, Ukraine
  • О. Г. Мельник Інститут проблем реєстрації інформації НАН України, Ukraine

DOI:

https://doi.org/10.35681/1560-9189.2021.23.3.244782

Ключові слова:

оптичні носії, наноструктури, плазмони, ближнє поле, нейроні мережі

Анотація

Представлено результати аналізу методів збільшення ємності оптич-них носіїв, у першу чергу, для систем архівного зберігання даних, виз-начено можливості застосування в перспективних типах оптичних носіїв нанокомпозитних матеріалів. Показано, що головним напрямком створення оптичних носіїв з надщільним записом в останні роки стало використання плазмонних резонансів у металевих наноструктурах і реалізація технології ближньопольового запису. Суттєве збільшення щільності запису може забезпечити використання штучної нейронної мережі при відтворенні даних з оптичного носія з нанорозмірними інформаційними елементами.

Посилання

How to store everything forever…using compact disks? URL: https://blog.seagate.com/business/ how-to-store-everything-forever-using-compact-disks/ (Last accessed: 29.09.2021).

Data Storage Outlook Report Insight: Storage Technologies and Advancements. URL: https://spectralogic.com/2021/06/03/2021-data-storage-outlook-report-insight-storage-technologies-and-advancements-blog/ (Last accessed: 29.09.2021).

Petrov V.V., Z. Le, Kryuchyn А.А., et al Long-term storage of digital information, National Academy of Sciences of Ukraine, Institute for Information Recording. Kyiv: Akademperiodyka, 2018. 148 p. ISBN 978-966-360-360-5.

Method of aberration compensation in sapphire optical discs for the long term data storage / Petrov V.V., Semynozhenko V.P., Puzikov V.M., et al. Functional Materials. 2014. Vol. 21, No 1. P. 105–111.

Viacheslav Petrov, Andriy Kryuchyn, and Ivan Gorbov. High-density optical disks for long-term information storage. Proc. SPIE 8011, 22nd Congress of the International Commission for Optics: Light for the Development of the World, 80112J (25 October 2011). https://doi.org/10.1117/12.900745.

Petrov V.V., Kryuchyn A.A., Shanoylo S.M. et al. Nadshchilnyy optychnyy zapys informatsiyi. Kyiv: IPRI NAN Ukrayiny, 2009. 282 p.

Jiang Meiling, Zhang Mingsi, Li Xiangping, et al. Research progress of super-resolution optical data storage [J]. Opto-Electronic Engineering. 2019. 46(3): 180649. doi: 10.12086/oee.2019.180649.

Kenneth D. Singer and Irina Shiyanovskaya. Co-extruded multilayer optical data storage media (Conference Presentation). Proc. SPIE 11305, Ultra-High-Definition Imaging Systems III, 1130504 (9 March 2020). https://doi.org/10.1117/12.2553638.

Xiangping Li. Nanoparticle-based multi-dimensional optical data storage. December 26, 2013. URL: https://www.amazon.com/Nanoparticle-based-multi-dimensional-optical-data-storage/dp/ 3659502170 (Last accessed: 29.09.2021).

Lamon S., Wu Y., Zhang Q., Liu X., Gu M. Nanoscale optical writing through upconversion resonance energy transfer. Science Advances. 24 Feb 2021. Vol. 7, No. 9. eabe2209. DOI: 10.1126/sciadv.abe2209.

Shiono T., Matsuzaki K., & Furumiya S. (2013). Near-field recording on phase-change nanoparticles and reflective reproduction from nanoantenna utilizing plasmonic resonance for high-density optical memory. Optics Express. 2013, Oct 21; 21(21):25532-43. doi:10.1364/oe.21.025532.

Gu, M., Zhang, Q. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 2016. 1. 16070. https://doi.org/10.1038/natrevmats.2016.70.

Project Silica. URL: https://www.microsoft.com/en-us/research/project/project-silica (Last accessed: 29.09.2021).

Sinjeung Park and Jae Won Hahn. Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material. Optics Express. 2009. Vol. 17, Issue 22. Р. 20203–20210. https://doi.org/10.1364/OE.17.020203.

M. Mansuripur, A.R. Zakharian, A. Lesuffleur, Sang-Hyun Oh, R.J. Jones, N.C. Lindquist, Hyungsoon Im, A. Kobyakov, and J.V. Moloney Plasmonic nano-structures for optical data storage. Optics Express. 2009. Vol. 17, Issue 16. Р. 14001–14014. https://doi.org/10.1364/OE.17.014001.

W.T. Chen, P.C. Wu, C.J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D.P. Tsai Manipulation of multidimensional plasmonic spectra for information storage. Appl. Phys. Lett. 2011. 98(17). 171106. https:// doi.org/10.1063/1.3584020.

O’Connor, D., & Zayats, A.V. The third plasmonic revolution. Nature Nanotechnology. 2010 Jul. 5(7), Р. 482–483. doi:10.1038/nnano.2010.137.

Zijlstra, P., Chon, J. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature. 2009. 459. P. 410–413. https://doi.org/10.1038/nature08053.

Bergman, David J., Stockman, Mark I. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters. 17 January 2003. Vol. 90, Issue 2. 027402.

Wiecha P.R., Lecestre A., Mallet N., et al. Pushing the limits of optical information storage using deep learning. Nature Nanotechnology. 2019. 14. 237–244. https://doi.org/10.1038/s41565-018-0346-1.

Miroshnichenko A. Deep learning beats the optical diffraction limit. Nature Nanotechnology. 2019. 14. Р. 198–199. https://doi.org/10.1038/s41565-018-0357-y.

K. de Haan, Y. Rivenson, Y. Wu, A. Ozcan Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proc. of the IEEE. January 2020. Vol. 108, Issue 1. Р. 30–50. DOI: 10.1109/JPROC.2019.2949575.

Yue, T., Wu, Z., Li, F. et al. A Youla-parameterized Gap Control for Next Generation of Optical Storage Systems. International Journal of Control, Automation and Systems. 2021. Vol. 19. Р. 2068–2078. https://doi.org/10.1007/s12555-019-0401-1.

Lin, S., Lin, H., Ma, C., Cheng, Y., Ye, S., Lin, F., Wang, Y. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light: Science & Applications. 2020. 9(1). doi:10.1038/s41377-020-0258-3.

An J.M., Zhao X., Li D.S., Zhang Y.J., Fei F., Pun E.Y.B., & Lin H. New insights into phosphorescence properties of LuAGG: Long afterglow phosphor-in-glass for optical data storage. Ceramics International. URL: https://doi.org/10.1016/j.ceramint.2020.09.155 (Last accessed: 29.09.2021).

Folio Photonics Raises $8M in Seed Fundinghttps. URL: http://www.finsmes.com/2019/05/ folio-photonics-raises-8m-in-seed-funding.html (Last accessed: 29.09.2021).

##submission.downloads##

Опубліковано

2021-09-21

Номер

Розділ

Фізичні основи, принципи та методи реєстрації даних