DOI: https://doi.org/10.35681/1560-9189.2019.21.3.183722

Деякі аспекти практичного застосування спеклів (огляд)

S. A. Shylo

Анотація


Виконано огляд робіт, які охоплюють застосування методів та ідей метрології спеклів у різноманітних галузях науки та техніки. Зокрема, особливу увагу спрямовано на аналіз застосувань спеклів (біоспеклів) у біології і медицині. Заключну частину огляду присвячено роботам з дослідження динаміки спеклів в об’єктах неорганічної природи. Вказано на загальну перспективність використання спеклів як потужного не руйнуючого оптичного дослідницького методу.  


Ключові слова


біоспекли; динаміка спеклів; спеклові поля

Повний текст:

PDF

Посилання


Allen L., and Jones D.G.C. An analysis of the granularity of scattered optical maser light. Phys. Lett. 1963. 7. Р. 321–323.

Considine P.S. Angular dependence of radiance of rough surfaces in imaging systems. J. Opt. Soc. Am. 1966. 56. Р. 877–883.

Isenor R., Object-image relationships in scattered laser ligh. Appl. Opt. 1967. 6. Р. 163–164.

Enloe L.H. Noise-like structure in the image of diffusely reflecting objects in coherent illumi-nation. Bell Sys. Tech. J. 1967. 46. Р. 1479–1489.

Martienssen W., and Spiller E. Coherence and fluctuations in light beams. Am. J. Phys. 1964. 32. Р. 919–926.

Mas G., Palpacuer M. Laser speckle pattern; experimental verification. Nouvelle Revue dе Optique. 1976. 7. Р. 27–32.

Mas G. Optimal distribution of multiple exposures in speckled image subtraction setups. Rev. Optics. 1969. 6. Р. 15–19.

Dainty J.C. Some statistical properties of random speckle patterns in coherent and partially coherent illumination. Optica Acta. 1970. 17. Р. 761–772.

Parry G. Speckle patterns in partially coherent light, in Laser Speckle and Related Phenomena, 2nd ed./Dainty J.C., Ed. Springer Verlag, New York, 1984. 121 p.

Gaggioli N.G. Comptes Rendus Acad. Sc. Paris. 1972. 275B. P. 727–730.

Sporton T.M. The scattering of coherent light from a rough surface. Br. J. Appl. Phys. (J. Phys. D). 1969. 2. Р. 1027–1034.

Goodman J.W. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976. 66. Р. 1145–1150.

Goodman J.W. Statistical properties of laser speckle patterns, in Laser Speckle and Related Phenomena. 2nd ed./Dainty J.C., Ed. Springer Verlag, New York, 1984. 280 p.

Françon M. Laser Speckle and Applications in Optics. Academic Press, New York, 1979. 174 p.

Lèger D., and Perrin J.C. Optical surface roughness determination using speckle correlation technique. Appl. Opt. 1975. 14. Р. 872–877.

Leendertz J.A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. J. Phys. Eng. (Sci. Inst.). 1970. 3. Р. 214–218.

Debrus S. et al. Interference and diffraction phenomena produced by a new and very simple method. Appl. Opt. 1969. 8. P. 1157–1160.

Dainty J.C. Laser Speckle and Related Phenomena 2nd ed./Dainty J.C., Ed. Springer Verlag, New York, 1984. 349 p.

Burch J.M., and Tokarsky J.M.J. Production of multiple beam fringes from photographic scatters. Optica Acta. 1968. 15. P. 101–104.

Butters J.N., and Leendertz J.A., Holographic and video techniques applied to engineering measurement. Trans. Inst. Meas. Ctrl. 1971. 4. P. 349–354.

Macovski A., Ramsey S.D., and Schaefer L.F. Time-lapse interferometry and contouring using television systems. Appl. Opt. 1971. 10. Р. 2722–2727.

Speckle Metrology/Stroh R.S. Ed.. Marcel Dekker, New York, 1993. 1730 p.

Briers J.D. The statistics of fluctuating speckle patterns produced by a mixture of moving and stationary scatterers. Opt. Quantum Electron. 1978. 10. P. 364–366.

Briers J.D. Laser doppler and time-varying speckle: A reconciliation. J. Opt. Soc. Am. 1996. A13. P. 345–350.

Arizaga R. et al. Display of local activity using dynamic speckle patterns. Opt. Eng 2002. 41. P. 287–294.

Pajuelo M. et al. Bio-speckle assessment of bruising in fruits. Opt. Lasers Eng. 2003. 40. P. 13–24.

Pomarico J.A. et al. Speckle interferometry applied to pharmacodynamics studies: Evaluation of parasite motility. Europ. Biophys. J. 2004. 33(8). P. 694–699.

Haberacker P., Digitale Bildverarbeitung Grundlagen und Anwendungen/Hanser C., Ed. Verlag, Munchen, 1985. 377 p.

Zobrist A., and Thompson W. Building a distance function for gestalt grouping. IEEE Transac. Comp. 1975. 24(4). P. 718–728.

Kruger R., Thompson W., and Turner A.F. Computer diagnosis of pneumoconiosis. IEEE Transac. Sys., Man Cybern. 1974. 4. P. 40–49.

Allam S., Adel M., and Refregier P. Fast algorithm for texture discrimination by using a separable ortonormal decomposition of the co-occurrence matrix. Appl. Opt. 1997. 36. P. 8313–8321.

Goodman J.W. Statistical properties of laser speckle patterns. Technical Report No 2303-1. Stanford Electronics Laboratories, Stanford University, 1963. 140 p.

Bray R.C. et al. Endoscopic laser speckle imaging of tissue blood flow: Aplication in the human knee. J. Orthop. Res. 2006. 24. P. 1650–1659.

Li N. et al. Cortical vascular blood flow pattern by laser speckle imaging. In 27th Annual International Conference of the Engineering in Medicine and Biology Society/Hopkins J., Ed. Baltimore, 2005. P. 3328–3331.

Winchester L.W., and Chou N.Y. Blood velocity measurements using laser speckle imaging, in 26th Annual International Conference. IEEE EMBS, San Francisco, 2004. P. 1252–1255.

Li P. et al. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt. Let. 2006. 31(12). P. 1824–1826.

Dunn A.K. et al. Simultaneous imaging of total cerebral hemoblobin concentration, oxyge-nation, and blood flow during functional activation. Opt. Let. 2003. 28(1). P. 28–30.

Cheng H. et al. Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging. Appl. Opt. 2003. 42(28). P. 5759–5764.

Pop C.V.L., Vamos C., and Turcu I. Fluctuations of light scattered on human erythrocytes — A statistical analysis. Rom. Jour. Phys. 2005. 50(9). P. 1207–1212.

Fujii H. et al. Blood flow observed by time-varying laser speckle. Opt. Let. 1985. 10(3). P. 104–106.

Tearney G.J., and Bouma B.E. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis. Opt. Let. 2002. 27(7). P. 533–535.

Aizu Y., and Asakura T. Bio-speckle phenomena and their application to the evaluation of blood flow. Opt. Laser Tech. 1991. 23. P. 205–219.

Zhao Y. et al. Point-wise and whole-field laser speckle intensity fluctuation measurements applied to botanical specimens. Opt. Lasers Eng. 1997. 28. P. 443–456.

Konishi N., and Fujii H. Real-time visualisation of retinal microcirculation by laser flow-graphy. Opt. Eng. 1995. 34(3). P. 753–757.

Forrester K.R. et al. Endoscopic laser imaging of tissue perfusion: New instrumentation and technique. Lasers Surg. Med. 2013. 33. P. 151–157.

Fujii H. et al. Evaluation of blood flow by laser speckle image sensing. Appl. Opt. 1987. 26. P. 5321–5325.

Stewart C.J. et al. A comparison of two laser-based methods for determining of burn scar perfusion: Laser doppler versus laser speckle imaging. Burns. 2005. 31. P. 744–752.

Zimnyakov D.A. et al. Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer. Appl. Opt. 2006. 45. P. 4480–4490.

Wardell K., Jakobsson A., and Nilsson G.E. Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans. Biomed. Eng. 1993. 40(4). P. 309–316.

Braga R.A. et al. Seeds characterization by dynamic speckle patterns: A proposal. In Biolo-gical Quality and Precision II SPIE. Boston, 2000. 351 p.

Braga R.A. Development of a model for the biospeckle applied to analyze been seed. Int. J. Agric. Research. 2015. 3. Р. 411–420.

Enes A.M. et al. Biospeckle laser em tecidos vivos e tecidos mortos de sementes de feijao (Phaseolus vulgaris L.) durante a perda de agua. In XXXIV Congresso Brasileiro de Engenharia Agricola, SBEA, Canoas, 2005. 285 p.

Braga R.A. et al. Potencial do bio-speckle laser para avaliacao da viabilidade desementes. Cien. Agrotec. 2001. 25(3). P. 645–649.

Nascimento J.M. et al. Analysis of sperm motility using optical tweezers. J. Biomed. Opt. 2006. 11(5). P. 4401–4403.

Urban C., and Seitz P. Measuring apparatus for measuring concentration and motil-ity of light scattering particles, has cross correlator for receiving signals from photo-detectors and processing mechanism for deriving components of velocity distribution. Patent EP1464966-A1. 2004.

Eskov A.P., Arefev I.M., and Gurilev O.M. Laser semen mobility and activity analyser —has output from photoreceiver converted into pulses for count divided to record proportion of mobile spermatozoids multiplied by velocity. Patent SU1154619-A. 1985.

Novales B. et al. Characterization of emulsions and suspensions by video image analy-sis,Colloids Surf. A Physicochem. Eng. Asp. 2013. 221. P. 81–89.

Granger C. et al. Influence of formulation on the structural network in ice cream. Int. Dairy J. 2015. 15. P. 255–262.

Burnel L., Brun A., and Snabre P. Microstructure movements study by dynamic speckle analysis. Proc. of SPIE. 2006. P. 6341–6344.

Muramatsu M., Guedes G.H., and Gaggioli N.G. Speckle correlation used to study the oxidation process in real time. Opt. Laser Tech. 1994. 26(3). P. 167–168.

Begemann T.F., Gülker G., Hinsch K. D., and Wolff K. Corrosion monitoring with speckle correlation. Appl. Opt. 1999. 38(28). P. 5949–5954.

Zanetta P., and Facchini M. Local correlation of laser speckle applied to the study of salt efflorescence on stone surfaces. Opt. Comm. 1993. 104. P. 35–38.

Martínez A., Ortiz C., Arizaga R., Rabal H.J., and Trivi M. Temporal evolution of speckle in foams. In 5th Latin-american Meeting on Optics and 8th Latin-american Meeting on Optics, Lasers, and Their Applications. Proc. SPIE. 2004. P. 1484–1488.

Bandyopadhyay R., Gittings A.S., Suh S.S., Dixon P.K., and Durian D.J. Speckle visibility spectroscopy: a tool to study time varying dynamics. Rev. Scientific Instruments. 2005. 76. P. 110–115.

Gorsky M.P, Maksimyak A.P., and Maksimyak P.P. Study of speckle-field dynamics scattered by surface of concrete during congelation, in Advanced Topics in Optoelectronics, Microelectronics, and Nanoelectronics III, Lancu O. et al., Eds. Proc. SPIE. 2007. Vol. 6635. P. 12–21.