Удосконалення сенсорів з призмовим типом збудження поверхневого плазмонного резонансу на полімерній основі
DOI:
https://doi.org/10.35681/1560-9189.2019.21.3.183437Ключові слова:
поверхневий плазмонний резонанс, пластикова підкладка, гаряче пресування, низькотемпературний відпал, біметалеві плівки, дисковий форматАнотація
Розглянуто шляхи поліпшення експлуатаційних характеристик (зниження вартості, підвищення чутливості та продуктивності) сенсорних приладів на основі призмового збудження поверхневого плазмонного резонансу (ППР) в конфігурації Кретчмана та скануванні кута падіння монохроматичного світла при застосуванні пластикової підкладки. Запропоновано удосконалену технологію виготовлення чутливого елемента ППР, яка включає гаряче пресування полімерної підкладки та модифікацію властивостей активного металевого покриття за рахунок низькотемпературного відпалу плівки Au або застосування біметалевої структури Ag/Au, що поєднує переваги обох шарів, а також конструкцію дискового варіанта сенсора на основі плоского інтегрованого чипа з голографічними ґратками для вводу-виводу світла.
Посилання
Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968. 216. P. 398–410.
Kretschmann E., Raether H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforschung A. 1968. 123. P. 2135–2136.
Kretschmann E., Determination of optical constants of metals through the stimulation of surface plasmon oscillations. Z. Phys. 1971. 241. P. 313–324.
Teng Y.Y., Stern E.A. Plasma radiation from metal grating surfaces. Phys. Rev. Lett. 1967. 19. P. 511–514.
Handbook of Surface Plasmon Resonance / Edited by R.B.M. Schasfoort and Anna J. Tudos. Cambridge (UK): Royal Society of Chemistry, 2008. 426 p.
Shankaran D.R., Gobi K.V., Miura N. Recent advancement in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B. 2007. 121(1). P. 158–177.
Mitchell J. Small molecule immunosensing using surface plasmon resonance. Sensors. 2010. 10. P. 7323–7346.
Puiu M., Bala C. SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors. 2016. 16. Р. 870–884.
Linman M.J., Abbas A., Cheng Q. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst. 2010. 135. Р. 2759–2767.
Kostyukevych K.V., Kostyukevych S.O. Sensor poverhnostnogo plazmonnogo rezonansa dlja opredelenija urovnja barbituratov v zhidkoj probe. Optojelektronika i poluprovodnikovaja tehnika. 2010. 45. S. 130–136.
Kostyukevych K.V., Kostyukevych S.O. Reakcionnyj otzhig kak sposob passivacii i stabilizacii poverhnostej biosensorov. Optojelektronika i poluprovodnikovaja tehnika. 2011. 46. S. 122–129.
Hoa X.D., Kirk A.G., Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors and Bioelectronics. 2007. 23. P. 151–160.
Singh P. Biosensors: historical perspectives and current challenges. Sensors and Actuators B. 2016. 229. Р. 110–130.
Shyrshov Yu.M., Venher Ye.F., Prokhorovych A.V., Ushenin Yu.V., Matsas Ye.P., Chehel' V.I., Samoylov A.V. Sposib detektuvannya ta vyznachennya kontsentratsiyi biomolekul ta molekulyarnykh kompleksiv ta prystriy dlya yoho zdiysnennya: pat. UA 46018 Ts2. MPK(2006): G01N 21/55. # 97105153, zayavl. 22.10.1997; opubl. 15.05.2002, Byul. No 5.
Shirshov Y.M., Chegel V.I., Subota Y.V., Matsas E.P., Kostyukevych K.V., Rachcov A.E., Merker R. Biosensors based on SPR and optimization of their working parameters. Proc. of SPIE. 1995. Vol. 2780. P. 257–260.
Kostyukevych S.O., Kostyukevych K.V., Khrystosenko R.V., Koptiukh A.A., Moskalenko N.L., Lysyuk V.O., Pohoda V.I. Sensor poverkhnevoho plazmonnoho rezonansu z chutlyvym elementom na polimerniy osnovi. Optoэlektronyka y poluprovodnykovaya tekhnyka. 2016. 51. S. 143–149.
Kostyukevych S.O., Shirshov Y.M., Matsas E.P., Chegel V.I., Stronski A.V., Subbota Y.V., Shepelyavi P.E. Application of surface plasmon resonance for the investigation of ultrathin metal films. Proc. of SPIE. 1995. Vol. 2648. Р. 144–151.
Kostyukevych S.O., Khrystosenko R. V., Kostyukevych K.V., Koptiukh A.A., Surovtseva O.R., Kryuchyn A.A. Molekulyarnyy analiz tonkykh plivok riznoyi pryrody na osnovi spektroskopiyi poverkh-nevykh plazmoniv. Reyestratsiya, zberihannya i obrob. danykh. 2018. T. 20. No 4. S. 5–20.
Kostyukevych K.V., Shirshov Ju.M., Hristosenko R.V., Samojlov A.V.,Ushenin Ju.V., Kostyukevych S.O., Koptjuh A.A. Osobennosti uglovogo spektra poverhnostnogo plazmon-poljaritonnogo rezonansa v geometrii Kretchmana pri issledovanii lateksnoj vodnoj suspenzii. Optojelektronika i poluprovodnikovaja tehnika. 2018. 53. S. 220–239.
Kostyukevych K.V., Khristosenko R.V., Pavluchenko A.S., Vakhula A.A., Kazantseva Z.I., Koshets I.A., Shirshov Yu.M. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B. 2016. 223. Р. 470–480.
Kostyukevych K.V., Khristosenko R.V., Shirshov Yu.M., Kostyukevych S.O., Samoylov A.V., Kalchenko V.I. Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2011. Vol. 14. No 3. Р. 313–320.
Hristosenko R.V., Kostyukevych K.V., Zyn'o S.A., Pavljuchenko A.S., Samojlov A.V., Ushenin Ju.V., Kostyukevych S.O., Kal'chenko V.I. Gazovyj sensor na poverhnostnyh plazmonah dlja raspoznavanija spirtov s ispol'zovaniem chuvstvitel'nyh plenok kaliksarenov. Optojelektronika i poluprovodnikovaja tehnika. 2010. 45. S. 137–144.
Hristosenko R.V., Nesterova N.V.,Kostyukevych K.V., Zagorodnjaja S.D., Baranova G.V., Go-lovan' A.V., Ushenin Ju.V., Samojlov A.V., Kostyukevych S.O. Immunosensor na osnove poverhnostnogo plazmonnogo rezonansa dlja opredelenija antitel protiv virusa Jepshtejna-Barr. Optojelek-tronika i poluprovodnikovaja tehnika. 2011. 46. S. 92–99.
Krystosenko R. V. Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. Vol. 19. No 1. Р. 84–89.
Kostyukevych K.V., Snopok B.A., Shirshov Yu.M., Kolesnikova I.N., Zinio S.A., Lugovskoi E.N. New opto-electronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen. Proc. of SPIE. 1998. Vol. 3414. P. 290–301.
Kostyukevych K.V., Hristosenko R.V., Ushenin Ju.V., Samolov A.V., Kostyukevych S.O. Immunosensor poverhnostnogo plazmonnogo rezonansa s povyshennoj chuvstvitel'nost'ju i stabil'nost'ju dlja detektirovanija fibrinogena, rastvorimogo fibrina i D-dimera v plazme krovi cheloveka. Optojelektronika i poluprovodnikovaja tehnika. 2012. 47. S. 70–76.
Kostyukevych S.O., Kostyukevych K.V., Khristosenko R.V., Lysiuk V.O., Koptyukh A.A., Moscalenko N.L. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 2017. 56(12). Р. 121907.
Dorozhyns'kyy H.V., Maslov V.P., Ushenin Yu.V. Sensorni prylady na osnovi poverkhnevoho plazmonnoho rezonansu: monohrafiya/NAN Ukrayiny, In-t fizyky napivprovidnykiv. Kyyiv: NTUU «KPI», 2016. 264 s.
Hristosenko R.V., Kostyukevych K.V., Ushenin Ju.V., Samojlov A.V. Uluchshenie jekspluatacionnyh harakteristik preobrazovatelej na osnove poverhnostnogo plazmonnogo rezonansa za schet opticheskoj chasti sensornyh priborov tipa Plazmon. Optojelektronika i poluprovodnikovaja tehnika. 2015. 50. S. 53–60.
Khrystosenko R.V. Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. Vol. 18. No 3. Р. 279–285.
Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B. 1999. 54. P. 3–15.
Yeatman E.M. Resolution and sensitivity in surface plasmon microscopy and sensing. Biosensors Bioelectron. 1996. 11. P. 635–649.
Kolomenskii A.A., Gershon P.D., Schuessler H.A. Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl. Opt. 1997. 36. P. 6539–6547.
Braundmeier A.J., Arakawa E.T. Effect of surface roughness on surface plasmon resonance adsorption. J. Phys. Chem. Solids. 1974. 35. P. 517–520.
Benjamin B.P., Weaver C. The adhesion of evaporated metal films on glass. Proc. Roy. Soc. A. 1961. 261. No 7. P. 516–531.
Tonkie plenki. Vzaimnaja diffuzija i reakcii/pod red. D. Pouta, K.T.D. Mejera. Moskva: Mir, 1982. 352 s.
Kostyukevych K.V. Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. Vol. 19. No 3. Р. 255–266.
Kostyukevych S.O., Koptyukh A.A, Kostyukevych K.V., Khrystosenko R.V., Pohoda V.I. Sposib vyhotovlennya robochoho elementa peretvoryuvacha z pryzmovym typom zbudzhennya poverkhnevoho plazmonnoho rezonansu na polimerniy pidkladtsi: pat. na kor. model' UA 129757 U. MPK (2006): G01N 21/55; B82Y 20/00. No u201805163; zayavl. 10.05.2018; opubl. 12.11.2018, Byul. No 21.
de Bruijn H.E., Kooyman R.P.H., Greve J. Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations. Applied Optics. 1992. Vol. 31. No 4. P. 440–442.
Fontana E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Applied Optics. 2006. Vol. 45. No 29. P. 7632–7642.
Verkerk M.J., Raaijmakers I.J.M.M. Topographic characterization of vacuum-deposited films by optical methods. Thin Solid Films. 1985. 124. P. 271–275.
Parmigiani F., Scagliotti M., Samoggia G., Ferraris G. P. Influence of the growth conditions on the optical properties of thin gold films. Thin Solid Films. 1985. 125. P. 229–234.
Kostyukevych K.V., Kostyukevych S.O., Shepeljavyj P.E. Rekonstrukcija poverhnosti poli-kristallicheskih plenok zolota pod vlijaniem temperaturnogo otzhiga. Optojelektronika i polup-rovodnikovaja tehnika. 2013. 48. S. 121–129.
Kostyukevych K.V., Kostyukevych S.O. Optimizacija jekspluatacionnyh harakteristik preobrazovatelej na osnove poverhnostnogo plazmonnogo rezonansa. Optojelektronika i poluprovodnikovaja tehnika. 2014. 49. S. 60–68.
Kostyukevych K.V., Kostyukevych S.O., Kudrjavcev A.A., Moskalenko N.L. Analiz izmenenija opticheskih harakteristik polikristallicheskih plenok zolota pod vlijaniem nizkotempera-turnogo otzhiga. Optojelektronika i poluprovodnikovaja tehnika. 2015. 50. S. 3–9.
Lysenko S.I., Snopok B.A., Sterligov V.A., Kostyukevych K.V., Shirshov Yu.M. Light scattering by molecular-organized films on the surface of polycrystalline gold. Optics and Spectroscopy. 2001. Vol. 90. No 4. Р. 606–616.
Kostyukevych S.O., Kostyukevych K.V., Khrystosenko R.V. Sposib vyhotovlennya robochoho elementa peretvoryuvacha z pryzmovym typom zbudzhennya poverkhnevoho plazmonnoho rezonansu. UA 112568 U. MPK(2014.01): G01N 21/55. No u201605636; zayavl. 25.05.2016; opubl. 26.12.2016, Byul. No 24.
Shirshov Yu.M., Samoylov A.V., Zinyo S.A., Surovceva E.R., Mirskiy V. Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors. 2002. 2. Р. 62–70.
Zyn'o S.A., Samoylov A.V., Surovtseva O.R., Shyrshov Yu.M. Detektor poverkhnevoho plazmonnoho rezonansu. UA 46512 A. MPK (2006.01): G01N 21/55, G01N 33/553. No 2001075476; zayavl. 31.07.2001; opubl. 15.05.2002, Byul. No 5.
Yuan X.C., Ong B.H., Tan Y.G., Zhang D.W., Irawan R., Tjin S.C. Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers. Journal of Optics A: Pure and Applied Optics. 2006. 8. P. 959–963.
Chen Y., Zheng R.S., Zhang D.G., Lu Y.H., Wong P., Ming H., Luo Z.F., Kan Q. Bimetallic chips for a surface plasmon resonance instrument. Appl. Opt. 2011. 50. P. 387–391.
Ghorbanpour M., Falamaki C. A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment. Journal of Nanostructure in Chemistry. 2013. 3. P. 66–73.
Snopok B.A., Kostyukevich K.V., Lysenko S.I., Lytvyn P.M., Shepeliavii P.E., Lytvyn O.S., Mamykin S.V., Zynio S.A., Kostyukevich S.A., Venger E.F, Shirshov Yu.M. Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2001. Vol. 4. No 1. P. 56–69.
Tabasi O., Falamaki C., Mahmoudi M. A detailed study on the fabrication of surface plasmon sensor chips: optimization of dextran molecular weight. Plasmonics. 2019. https://doi.org/10.1007/ s11468-018-00903-8.
Manickam G., Gandhiraman R., Vijayaraghavan R.K., Kerr L., Doyle C., Williams D.E., Daniels S. Protection and functionalisation of silver as an optical sensing platform for highly sensitive SPR based analysis. Analyst. 2012. 137. Р. 5265–5271.
Kooyman R.P.H., Kolkman H., Van Gent J., Greve J. Surface plasmon resonance immunosensors: sensitivity consideration. Anal. Chim. Acta. 1988. 213. P. 35-45.
Szunerits S., Castel X., Boukherroub R. Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity. The Journal of Physical Chemistry C. 2008. 112(40). P. 15813–15817.
Gandhiraman R.P., Gubala V., O.Mahony C.C., Cummius T., Raj J.S., Williams D.E. PECVD coatings for functionalization of point-of-care biosensor surfaces. Vacuum. 2012. 3. P. 547–555.
Dey D., Goswami T. Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. Journal of Biomedicine and Biotechnology. 2011. Article ID 348218, 7 pages; doi: 10.1155/2011/348218.
Piliarik M., Vala M., Tichy I., Homola J. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosensors and Bioelectronics. 2009. 24. Р. 3430–3435.
Campas M., Katakis I. DNA biochip arraying, detection and amplification strategies. Trends in Analytical Chemistry. 2004. Vol. 23. No 1. Р. 49–62.
Vala M., Chadt K., Piliarik M., Homola J. High-performance compact SPR sensor for multi-analyte sensing. Sensor and Actuators B. 2010. 148. Р. 544–549.
Abbas A., Linman M.J., Cgeng Q. New trend in instrumental desing for surface plasmon resonance-based biosensors. Biosensors and Bioelectronics. 2011. 26. 1815–1824.
Lee H., Xu L., Koh D., Nyayapathi N., Oh K.W. Various sensors with microfluidics for biological applications. Sensors. 2014. 14. P. 17008–17036.
Oresko J.J., Duschl H., Huang S., Sun Y., Chen A.C. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans. Inf. Technol. Biomed. 2010. 14(3). P. 734–740.
Wei Q., Qi H., Luo W., Tseng D., Ki S.J., Wan Z., Gorocs Z., Bentolila L.A., Wu T.T., Sun R., Ozcan A. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ASC Nano. 2013. 7(10). P. 9147–9155.
Walker F.M., Ahmad K.M., Eisenstein M., Soh H.T. Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems. Anal. Chem. 2014. 86(18). P. 9236–9241.
Long K.D., Yu H., Cunningham B.T. Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomedical Optic Express. 2014. Vol. 5. No 11. P. 3794 (15).
Liu Y., Chen S., Liu Q., Masson J.-F., Peng W. Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing. Optics Express. 2015. Vol. 23. No 16. P. 20541.
Cai F., Wang D., Zhu M., He S. Pencil-like imaging spectrometer for bio-samples sensing. Biomedical Optic Express. 2017. Vol. 8. No 12. P. 5427 (10).
Petrov V.V., Kryuchyn A.A., Shanojlo S.M., Kostyukevych S.O., Kravec V.G., Lapchuk A.S. Opticheskie diski istorija, sostojanie, perspektivy razvitija. Kiev: Nauk. dumka, 2004. 174 c.
Fontana E. Theoretical and experimental study of the surface plasmon resonance effect on a recordable compact disk. Applied Optics. 2004. Vol. 43. No 1. P. 79–87.
Kryuchyn A.A., Petrov V.V., Kostyukevych S.O., Kostyukevych K.V., Kudryavtsev A.A. Is there any future of optical discs? Semiconductor Physics, Quantum Electronics and Optoelectronics. 2013. Vol. 16. No 4. Р. 362–365.
Challener W.A., Ollmann R.R., Kam K.K. A surface plasmon resonance gas sensor in «compact disc» format. Sensors and Actuators B. 1999. 56. Р. 254–258.
Sedoglavich N., Kunnemeyer R., Talele S.R., Sharpe J.C. Phase-polarisation contrast for surface plasmon resonance based on low coast grating substrates. Current Applied Physics. 2008. 8. P. 351–354.
Sung Y-Y, Cai J-M, Hsu C-C, Chen J-P, Lee M-C, Tsai R-Y. The properties of the grating-coupled reflection-type SPR bio-sensors with compact disk. IEEE. Busan, Korea. July 2012. P. 661–662.
Madou M., Zoval J., Jia G.Y., Kido H., Kim J. Lab on a CD. Annu. Rev. Biomed. Eng. 2006. 8. P. 601–628.
Lai S., Wang S., Luo J., Lee L.J., Yang S.-T., Madon M.J. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 2004. 76. P. 1832–1837.
Hemmi A., Usui T., Moto A., Tobita T., Soh N., Nakano K., Zeng H., Uchiyama K., Imato T., Nakajima H. A surface plasmon resonance sensor on a compact disk-type microfluidic device. J. Sep. Sci. 2011. 34. P. 2913–2919.
Yih J.-N., Chiu K.-C., Chou S.-Y., Lin C.-M., Lan Y.-S., Chen S.-J., Cheng N.-J. Grating-coupled surface-plasmon-resonance biosensor discs with a C-type fluidic channel for monitoring growth of self-assembled monolayer. Applied Mechanics and Materials. 2013. Vol. 284–287. P. 2069–2074.
Homola J., Koudela I., Yee S.S. Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison. Sensors and Actuators B. 1999. 54. Р. 16–24.
Kostyukevych S.O.,Kostyukevych K.V. Bahatoelementnyy peretvoryuvach na osnovi poverkhnevoho plazmonnoho rezonansu u dyskovomu formati. UA 103662 S2. MPK (2006.01): G01N 21/55, G01N 21/27, G01N 21/25. No a201111725; zayavl. 04.10.2011; opubl. 11.11.2013, Byul.No 21.
Clerc D., Lukosz W. Integrated optical output grating coupler as refractometer and (bio-) chemical sensor. Sensor and Actuators B. 1993. 11. P. 461–465.
Pedersen H.C., Zong W., Sorensen M.H., Thirstrup C. Integrated holographic grating chip for surface plasmon resonance sensing. Optical Engineering. 2004. Vol. 43. Nо 11. Р. 2505–2510.
Petrov V.V., Kryuchyn A.A., Kostyukevych S.O., Rubish V.M. Neorhanichna fotolitohrafiya: monohrafiya/Nats. akad. nauk Ukrayiny, In-t problem reyestratsiyi informatsiyi, In-t fizyky napivprovid-nykiv. Kyyiv: IMF NANU, 2007. 195 s.
Petrov V.V., Kryuchyn A.A., Shanoylo S.M., Kravets V.H., Kosko I.O., Belyak Ye.V., Lapchuk A.S., Kostyukevych S.O. Nadshchil'nyy optychnyy zapys informatsiyi Kyyiv: NANU, 2009. 282 s.
Petrov V.V., Kryuchyn A.A., Kunytskyy Yu.A., Rubish V.M., Lapchuk A.S., Kostyukevych S.O. Metody nanolitohrafiyi. Kyyiv: Nauk. dumka, 2015. 262 s.
Kostyukevich S.A., Morozovskaya A.N., Shepelyavyi P.E., Kostyukevich E.V., Kudryavtsev A.A., Moskalenko N.L., Krychin A.A. Recording information in thin films of chalcogenide semiconductors by using photoinduced transformations. Journal of Optical Technology. 2005. 72. P. 418–421.
Kryuchyn A.A., Rubish V.M., Kostyukevych S.O., Min'ko V.I., Shepelyavyy P.Ye., Lysyuk V.O., Kostyukevych K.V., Surmach M.A. Reyestruval'ni materialy dlya lazernoyi termolitohrafiyi. Reyestratsiya, zberihannya i obrob. danykh. 2012. T. 14. No3. S. 3–11.
Kryuchyn A.A., Petrov V.V., Rubish V.M., Lapchuk A.S., Kostyukevych S.O., Shepeliavyi P.E., Kostyukevych K.V. High-speed optical recording in vitreous chalcogenide thin films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2014. Vol. 17. No 4. Р. 389–393.
Petrov V.V., Lytvyn P.M., Trunov M.L., Kryuchyn A.A., Belyak Ye.V., Rubish V.M., Kostyukevych S.O., Koptyukh A.A. Metody formuvannya nanorozmirnykh struktur na plivkakh khal'kohenidnykh sklopodibnykh napivprovidnykiv. Reyestratsiya, zberihannya i obrobka danykh. 2016. T. 18.No 1. 3–13.
Rubish V.M., Pop M.M., Mykaylo O.A., Kryuchyn A.A., Maryan V.M., Durkot M.O., Ya-sinko T.I., Kostyukevich S.O., Kostyukevich K.V. Laser-induced changes in the optical characteristics of amorphous films of the As-Sb-S system. Scientific Herald of Uzhhorod University Physics series. 2017. 42. Р. 14–26.