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Обґрунтовано важливість розв’язання задачі підвищення якості описів 

до змін у вихідних текстах програм у контексті систем контролю вер-

сій. Для фільтрації коментарів застосовано методи машинного нав-

чання, зокрема нейронні мережі різних архітектур. Використання ней-

ронних мереж є доцільним через потребу в автоматичному виявленні 

описів, що точно відображають призначення внесених змін. Проведено 

порівняльний аналіз моделей на основі Transformer-архітектур, таких як 

BERT, RoBERTa та DistilBERT, і їхнє застосування у бінарних класифі-

каторах для фільтрації змін. Здійснено навчання моделей на множині 

описів до внесених змін, отриманих за допомогою спеціального програм-

ного інтерфейсу GitHub REST API. Проведено оцінювання точності мо-

делей через використання метрик: точності (Accuracy) та середнього 

гармонійного (F1-score). Також підтверджено ефективність середо-

вища Google Colab для прототипування моделей машинного навчання. 

Ключові слова: AdamW-алгоритм, BERT, commit message, DistilBERT, 

GitHub REST API, RoBERTa, Transformer, вихідний текст програми, ПЗ, 

повідомлення про внесені зміни, програмне забезпечення, репозиторій, 

середнє гармонійне, система контролю версій. 

 

Вступ 

В епоху цифрових технологій, коли розробка програмного забезпечення віді-

грає важливу роль у різних галузях, системи контролю версій стають невід’ємним 

інструментом для управління вихідним кодом. Динамічні зміни ринку вимагають 

від розробників не лише швидкості і якості роботи, а й структурованого та надій-

ного підходу до керування версіями програм [1].  

Системи контролю версій дають розробникам змогу гнучко працювати над 

проєктами, вносити зміни та тестувати нові функції, зберігаючи, за потреби, мож-

ливість повернення до попередніх версій. Це допомагає запобігти втраті даних, під-

тримувати стабільність системи та покращувати командну співпрацю. 
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Збереження змін у системі контролю версій відіграє ключову роль у розу-

мінні, відстеженні та збереженні історії модифікацій у кодовій базі. Кожне пові-

домлення про зміни відображає конкретну правку, внесену розробником. Деталь-

ний опис змін сприяє тому, щоб як поточні, так і майбутні члени команди могли 

зрозуміти, які коригування було зроблено та з якою метою [2]. 

У підсумку, детальні описи змін покращують документацію проєкту, спро-

щують технічну підтримку, дозволяють відстежувати етапи його розвитку та логіку 

прийняття рішень, а також роблять проєкт більш прозорим. 

Розробка методу забезпечення якості коментарів до внесених змін у вихід-

ному коді для систем контролю версій стає особливо важливою через збільшення 

обсягів проєктів і ускладнення структури кодової бази.  

Оскільки до сучасних проєктів можуть бути залучені розробники з різним до-

свідом і підходами до програмування, фільтр описів змін, що оцінює зміст і кон-

текст коментарів, сприятиме кращому розумінню змін іншими членами команди та 

полегшить технічну підтримку [3]. 

Отже, опис внесених змін — це повідомлення, зміст якого відповідає загаль-

ним правилам написання повідомлень про внесені зміни, є лаконічним, описує ха-

рактер змін, їхні ефект і причину. 

1. Правила щодо оформлення повідомлення про внесені зміни [4]: 

а) опис повинен мати заголовок і може мати тіло. Ці частини мають бути роз-

ділені порожнім рядком; 

б) заголовок не має бути довгим, не більше 50–70 символів; 

в) дієслова у заголовку повинні вживатись у доконаній формі. 

2. Правила щодо подання інформації у повідомленні про внесені зміни: 

а) має бути описано, чому були зроблені зміни; 

б) який ефект має це повідомлення про внесені зміни; 

в) якщо внесені зміни виправляють якусь проблему, то необхідно її вказати; 

г) подання інформації має бути таким, щоби фахівець, який не має розуміння 

щодо проблеми чи структури коду, зрозумів, що було зроблено, і який вплив це має 

на проєкт (програму). Приклади описів наведено в табл. 1. 

 
Таблиця 1. Коментарі до внесених змін, які відповідають правилу 2.г 

№ 

за/п 
Приклад повідомлення Мета повідомлення 

1 Refactored authentication logic to improve 

code readability and reduce duplication 

Покращити читабельність коду і усунути 

надлишкові фрагменти 

2 Fixed race condition in data loader to prevent 

intermittent test failures 

Усунути причину нестабільного прохо-

дження тестів 

3 Optimized image rendering to improve page 

load performance on mobile devices 

Пришвидшити завантаження на мобіль-

них пристроях 

4 Updated password hashing algorithm to 

enhance security compliance 

Підвищити рівень безпеки відповідно до 

вимог 

5 Added error messages to login form to 

improve user feedback 

Забезпечити більш інтуїтивну взаємодію з 

користувачем 

6 Rewrote unit tests to align with updated API 

behavior 

Актуалізувати тести відповідно до онов-

леної логіки роботи API 
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Постановка задачі 

Усі, наведені у попередньому розділі правила написання повідомлень про 

внесені зміни, можна опрацювати засобами будь-якої мови програмування, проте 

для правила 2.г потрібно використовувати саме машинне навчання, так як форма-

льних правил для визначення, що було зроблено і чому, не існує — для цього пот-

рібне «людське» розуміння контексту та змісту повідомлення про внесені зміни. 

Звідси випливає постановка задачі: створити метод забезпечення якості повідом-

лень про внесені зміни вихідних текстів програм у системах контролю версій, який 

аналізуватиме опис внесених розробником змін у вихідний текст програми та по-

вертатиме мітку, чи відповідає цей коментар до внесених змін на питання «що було 

зроблено і чому?», тобто «так» чи «ні». 

Формалізація задачі фільтра. Нехай X — множина описів внесених змін (ге-

неральна сукупність), кожне із цих повідомлень про внесені зміни описується m-

вимірним вектором слів: 
 

𝑥⃗ = {𝑥1, 𝑥2, … , 𝑥𝑚}, 𝑥⃗ ∈ 𝑿, (1) 
 

де m — розмірність вектора слів. 

Y — множина можливих відгуків (міток) у вигляді M-вимірного вектора: 
 

𝑦⃗ = {𝑦1, … , 𝑦𝑀}, 𝑦⃗ ∈ 𝒀,           (2) 
 

де M = 2 —– це кількість відгуків (класів), які потрібно отримати: перший відгук 

— чи задовольняє поточне повідомлення вимогам, другий — не задовольняє. 

Звідси випливає, що шуканий фільтр — це задача бінарної класифікації: Y = {0, 1} 

[5]. 

Отже, модель фільтра повідомлень до внесених змін можна описати таким 

сюр’єктивним, але не ін’єктивним, відображенням: 
 

𝑓: 𝑿 → 𝒀. (3) 

 

Збір і підготовка навчальних корпусів повідомлень 

Для збору даних для навчання було використано один із найбільших веб-сер-

вісів для розміщення ІТ-проєктів і спільної розробки програмного забезпечення 

GitHub, в основі якого лежить відома система контролю версій Git. Цей веб-сервіс 

має спеціальний програмний інтерфейс для застосунків, який називається GitHub 

REST API [6]. Так як дослідження пов’язане з перевіркою змісту повідомлень 

(commit messages) про внесені зміни (differences, скорочено «diffs») для систем кон-

тролю версій, знадобилися такі інтерфейси: 

1) отримання переліку репозиторіїв (проєктів); 

2) отримання повідомлень до внесених змін для кожного репозиторію. 

Наведені вище сервіси мають тип GET http-запиту, повинні формувати та пе-

редавати на сервер відповідні GET-параметри та http-заголовки. У свою чергу, від-

повідь від сервісів надходить у текстовому форматі структурованих даних JSON. 

Указані в табл. 2 http-запити мають однакові набори http-заголовків, а саме: 

1) 'Accept': 'application/vnd.github+json' — тип відповіді від програмного ін-

терфейсу GitHub REST API; 
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2) 'Authorization': 'Bearer [token]' — авторизація користувача API, де token — 

спеціальний набір символів, який можна згенерувати в налаштуваннях користувача 

веб-сервісу GitHub; 

3) 'X-GitHub-Api-Version': '2022-11-28' — версія програмного інтерфейсу 

GitHub REST API. 

 
Таблиця 2. Особливості сервісів програмного інтерфейсу GitHub REST API 

№ Назва 

сервісу 
URL-посилання GET-параметри 

«Корисні» поля для 

дослідження 

1 Отримання 

переліку ре-

позиторіїв 

https://api.github.c

om/repositories 

since — параметр, зна-

чення якого повинне бути 

цілим числом та відповідає 

ідентифікатору репозито-

рія. Він не є обов’язковим. 

Якщо цей параметр прису-

тній, то у відповіді буде по-

вернуто перелік репозито-

ріїв, ідентифікатори яких 

більші за вказаний у пара-

метрі 

id — ідентифікатор репози-

торію; 

full_name — назва репози-

торію; 

description — детальний 

опис репозиторію 

2 Отримання 

повідомлень 

до внесених 

змін для кож-

ного репози-

торію 

https://api.github.c

om/repos/[full_na

me]/commits?per_

page=100, 

де full_name — 

назва репозито-

рію з пункту № 1 

per_page — кількість пові-

домлень про внесені зміни 

у відповіді на один запит. 

Необов’язковий параметр. 

За замовчуванням встанов-

лено 30 повідомлень 

sha — символьна послідов-

ність (відбиток) повідом-

лення про внесені зміни, з 

якого потрібно починати 

пошук 

sha — символьна послідов-

ність (відбиток) повідом-

лення про внесені зміни; 

message — повідомлення 

про внесені зміни. Знахо-

диться в JSON-об’єкті 

«commit»; 

date — дата та час, коли 

були внесені зміни до репо-

зиторію. Знаходиться в 

JSON-об’єкті «author», 

який, у свою чергу, розмі-

щений у JSON-об’єкті 

«commit»; 

sha з JSON-масиву parents 

— символьна послідов-

ність (відбиток) повідом-

лення про внесені зміни по-

передніх внесених змін 

 

Після завантаження було виконано ручне маркування цих даних, тобто відне-

сення кожного повідомлення до відповідного класу згідно з правилом 2.г. Так як 

такий процес довготривалий, то у цій роботі використовується 8 тис. повідомлень 

з 1 млн. завантажених. 

Після аналізу промаркованих описів внесених змін було зроблено висновок, 

що дані є нерівномірними. В отриманій вибірці описи, які не відповідають правилу 

2.г, кількісно переважають повідомлення, які відповідають вимогам. 

Перед подачею повідомлень про внесені зміни на вхід досліджуваних нейрон-

них мереж (трансформерів) було виконано: 

1) токенізацію повідомлень на навчальній вибірці [7]; 
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2) векторизацію повідомлень лише для однієї моделі на основі encoder-архі-

тектури трансформера, тому що інші попередньо навчені моделі мають вбудовану 

векторизацію [8]. 

 

Метод забезпечення якості коментарів до внесених змін  
у вихідних текстах програм для систем контролю версій 

В основу першого фільтра (рис. 1) покладено модель, побудовану на основі 

«класичної» encoder-архітектури трансформера (transformer-encoder). Ця модель 

складається з: 

1) трьох вагових шарів (weighted layers): 

а) вхідного (Embedding) шару; 

б) одного трансформерного блоку, який застосовує багатоголовий механізм 

уваги з 4 головами та має прихований шар розміром 512 нейронів; 

в) вихідного Dense-шару [9] з двома нейронами, який повертатиме бажаний 

відгук (M = 2); 

2) проміжного шару без ваг (Global Average Pooling), який «конденсує» всю 

вхідну послідовність в один вектор фіксованої довжини для подальшої передачі в 

Dense-шар [9]. 

 

Як алгоритм оптимізації ваг обрано AdamW [10], що, у свою чергу, є алгорит-

мом Adam зі спеціальним варіантом регуляризації на основі пониження ваг (weight 

decay). Обраний алгоритм демонструє швидше навчання та краще узагальнення, 

основними кроками якого є: 

1) ініціалізація параметрів: 

а) встановлення початкових значень для параметрів моделі θ0 (вектор ваг) 

випадковим чином; 

б) ініціалізація першого моменту (оцінка середнього градієнта) 𝑚0 = 0 та 

другого моменту (оцінка дисперсії градієнта) 𝑣0 = 0; 

в) встановлення гіперпараметрів: 

𝜂 — швидкість навчання (learning rate); 

𝛽1 та 𝛽2 — коефіцієнти згасання для першого та другого моментів; 

𝜖 — деяке мале значення для запобігання діленню на нуль; 

𝜆 — коефіцієнт вагового спаду (weight decay); 

Рис. 1. Архітектура, побудована на основі encoder-частини «класичного» трансформера 
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2) обчислення градієнта: для кожної ітерації 𝑡 обчислюється градієнт функції 

втрат: 
 

𝑔𝑡 = ∇𝜃𝑓(θ𝑡), (4) 
 

де 𝑓(θ) — це функція втрат; 𝑔𝑡 — градієнт для поточних параметрів; 

3) оновлення моментів: 

а) оновлення першого моменту (оцінка середнього градієнта): 
 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡; (5) 
 

б) оновлення другого моменту (оцінка дисперсії градієнта): 
 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2; (6) 

 

4) коригування зміщення моментів: для того щоби компенсувати зміщення на 

початкових етапах (оскільки 𝑚0 = 0 та 𝑣0 = 0), відбувається коригування: 
 

𝑚𝑡̂ =
𝑚𝑡

1 − 𝛽1
𝑡 , (7) 

 

𝑣𝑡̂ =
𝑣𝑡

1 − 𝛽2
𝑡 ; (8) 

 

5) оновлення параметрів з урахуванням вагового спаду та адаптивної швид-

кості навчання: 
 

θ𝑡 = θ𝑡−1 − 𝜂 (
𝑚𝑡̂

√𝑣𝑡̂ + 𝜖
+ 𝜆θ𝑡−1) , (9) 

 

де ваговий спад 𝜆θ𝑡−1 застосовується окремо від основного процесу оновлення гра-

дієнта, що робить AdamW відмінним від класичного Adam; 

6) повторення кроків 2–5 для кожної ітерації 𝑡, поки не буде досягнуто зупин-

ки (залежно від кількості епох або критеріїв зупинки). 

Для зменшення прояву явища перенавчання, використано методи регуляри-

зації: 

1) введено додатковий шар Dropout з імовірністю 30 % — випадкове виклю-

чення нейронів шару із заданою ймовірністю p під час кожної ітерації навчання, 

метою якого є перешкоджання спільній адаптації ваг нейронів шару, яка, у свою 

чергу, призводить до перенавчання [11]; 

2) додано метод ранньої зупинки. 

Щоб імплементувати наведену вище модель було використано мову програ-

мування Python (версії 3.11.12) та застосовано бібліотеку TensorFlow (2.18.0). У 

табл. 3 наведено порівняльну характеристику між TensorFlow та іншими популяр-

ними бібліотеками для машинного навчання, такими як PyTorch [12], Keras [13] та 

Scikit-learn [14]. Кожна із цих бібліотек має свої унікальні можливості та підходить 

для різних типів завдань. 
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Таблиця 3. Особливості бібліотек для машинного навчання 

Характеристика TensorFlow PyTorch Keras Scikit-learn 

Рік випуску 2015 2016 2015 2007 

Розробник Google Facebook (Meta) 

Google 

(підмодуль 

TensorFlow) 

Інститут 

Франсуа Шоле 

Мова  

програмування 

Python, C++, 

Java, Go, 

JavaScript, 

Swift 

Python, C++ Python Python, C++ 

Основне 

використання 

Глибоке нав-

чання, ней-

ронні мережі 

Глибоке нав-

чання, нейронні 

мережі 

Інтерфейс для 

TensorFlow/ви-

сокорівневе 

API 

Класичні ML-ал-

горитми, регре-

сія, класифікація 

Підтримка 

CPU/GPU 

Так (підтримує 

GPU через 

CUDA, TPU) 

Так (GPU через 

CUDA) 

Так (через 

TensorFlow або 

Theano) 

Лише CPU (GPU 

підтримується 

через обгортки) 

Модульність 

Висока 

(TensorFlow 2.0 

спрощений) 

Висока (динамі-

чні обчислюва-

льні графи) 

Висока (зруч-

ний API поверх 

TensorFlow) 

Середня (для 

традиційних 

ML-моделей) 

Динамічний граф 

Ні (але є функ-

ція Eager Exe-

cution у TF 2.0) 

Так (основа 

PyTorch) 

Ні (покладає-

ться на 

TensorFlow) 

Ні 

Простота 

використання 

Відносно скла-

дна, але зрос-

тає з TF 2.0 

Простий для 

прототипування, 

інтуїтивний 

Дуже простий 

(високий рівень 

абстракції) 

Дуже простий 

(для класичних 

задач ML) 

Гнучкість 

Висока (низь-

кий рівень  

контролю) 

Висока (простий 

контроль над об-

численнями) 

Обмежена (ви-

сокий рівень 

абстракції) 

Середня (зосере-

джена на класич-

них алгоритмах) 

Обчислювальні 

графи 

Статичні (але є 

динамічна  

можливість) 

Динамічні (ство-

рюються під час 

виконання) 

Статичні (через 

TensorFlow або 

Theano) 

Ні 

Розподілені  

обчислення 

Так, відмінна 

підтримка 

(TPU, класте-

ризація) 

Обмежена 

підтримка 

Через 

TensorFlow 
Ні 

Підтримка мобіль-

них пристроїв 

Так 

(TensorFlow 

Lite) 

Ні 

Так (через 

TensorFlow 

Lite) 

Ні 

Експорт моделей 

TensorFlow 

SavedModel, 

HDF5, TF.js, 

TF Lite 

TorchScript, 

ONNX 

HDF5, 

TensorFlow 

SavedModel 

Pickle, ONNX 

Спільнота  

та ресурси 

Велика, багато 

офіційної доку-

ментації, підт-

римка від 

Google 

Велика, активна 

спільнота, ба-

гато прикладів 

Велика спіль-

нота через 

TensorFlow/ 

Keras 

Дуже велика для 

класичного ML 

Продуктивність 

Висока продук-

тивність, особ-

ливо на вели-

ких моделях 

Висока продук-

тивність на GPU 

Висока (через 

TensorFlow) 

Висока продук-

тивність для тра-

диційного ML 
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Характеристика TensorFlow PyTorch Keras Scikit-learn 

Використання  

в індустрії 

Широко вико-

ристовується, 

особливо у ве-

ликих проєктах 

(Google, Uber, 

Airbnb) 

Використовує-

ться для науко-

вих досліджень і 

прототипування 

Широко вико-

ристовується 

для швидкої 

розробки 

Дуже популяр-

ний у наукових 

дослідженнях і 

стартапах 

 

Для побудови наступних фільтрів було застосовано високорівневі обгортки з 

бібліотеки TensorFlow, які базуються на трансформених моделях інших типів, а 

саме: BERT [15], RoBERTa [16], DistilBERT [17] та XLM-RoBERTa [18]. Основні 

особливості цих моделей наведено в табл. 4. 

 
Таблиця 4. Загальна порівняльна характеристика трансформерних моделей 

Характеристика BERT RoBERTa DistilBERT XLM-RoBERTa 

Повна назва 

Bidirectional 

Encoder 

Representations 

from 

Transformers 

Robustly 

Optimized BERT 

Pretraining 

Approach 

Distilled BERT 
Cross-lingual 

RoBERTa 

Архітектура 

Двонапрямле-

ний трансфор-

мер (Encoder) 

Покращений 

BERT 

Спрощений 

(менше шарів) 

BERT 

Мультимовний 

RoBERTa 

Розмір 
~110 млн 

параметрів 

~125 млн 

параметрів 

~66 млн 

параметрів 

~270 млн 

параметрів 

Підтримка мов Англійська Англійська Англійська Більше 100 мов 

Дані для  

навчання 

BooksCorpus та 

Wikipedia 

Більший корпус: 

CommonCrawl, 

WebText, CC-

News 

Те саме, що 

BERT 

CommonCrawl 

(більше 100 мов) 

Маскування 

(MLM) 

Маскування то-

кенів (15%) 

Динамічне маску-

вання 

Те саме, що в 

BERT 

Те саме, що 

RoBERTa 

NSP (Next 

Sentence 

Prediction) 

Так Ні Ні Ні 

 

У роботі використовується 16 попередньо натренованих моделей, які були до-

навчені на корпусах повідомлень до внесених змін, зібраних за допомогою сервісів 

GitHub REST API. Таким чином, створено також шістнадцять фільтрів описів вне-

сених змін. Дані щодо їхніх параметрів зведено в табл. 5, архітектуру зображено на 

рис. 2. 

 
Таблиця 5. Основні параметри попередньо натренованих моделей 

Назва моделі Кількість 

парамет-

рів, млн 

Шари Го-

лови 

Розмір  

вектора  

ознак 

Мова Збере-

ження 

регістра 

літер 

bert_tiny_en_uncased ~4 2 2 128 Англійська Ні 

bert_small_en_uncased ~29 4 4 256 Англійська Ні 

bert_medium_en_uncased ~42 8 8 512 Англійська Ні 
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bert_base_en_uncased ~110 12 12 768 Англійська Ні 

bert_base_en ~110 12 12 768 Англійська Так 

bert_base_multi ~110 12 12 768 Більше  

100 мов 

Так 

bert_large_en_uncased ~340 24 16 1024 Англійська Ні 

bert_large_en ~340 24 16 1024 Англійська Так 

bert_tiny_en_uncased_sst2 ~4 2 2 128 Англійська Ні 

roberta_base_en ~125 12 12 768 Англійська Так 

roberta_large_en ~355 24 16 1024 Англійська Так 

distil_bert_base_en_uncased ~66 6 12 768 Англійська Ні 

distil_bert_base_en ~66 6 12 768 Англійська Так 

distil_bert_base_multi ~134 6 12 768 Більше  

100 мов 

Так 

xlm_roberta_base_multi ~270 12 12 768 Більше  

100 мов 

Так 

xlm_roberta_large_multi ~550 24 16 1024 Більше  

100 мов 

Так 

 

 

Нижче наведено пояснення до позначень, використаних у табл. 5: 

1) назва моделі — це міжфреймворкові стандартизовані позначення архітек-

тур і конфігурацій трансформерів. Вони використовуються в TensorFlow, PyTorch 

та інших бібліотеках; 

2) кількість параметрів — це орієнтовне значення, яке визначає складність 

моделі та впливає на її продуктивність і обсяг пам’яті; 

3) шари / голови — характеристики моделі, які визначають глибину та здат-

ність до обробки контексту; 

4) розмір вектора ознак — це довжина векторного представлення кожного то-

кена після обробки на кожному шарі трансформера; 

Рис. 2. Узагальнена архітектура моделей BERT, RoBERTa, DistilBERT та XLM-RoBERTa 
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5) мова — назва мови (набору мов), на яких тренувалася модель; 

6) збереження регістру літер — індикатор, який означає, що вся текстова ін-

формація перед обробкою приводиться до нижнього регістру (lowercase). 

Основними елементами архітектури моделей BERT, RoBERTa, DistilBERT та 

XLM-RoBERTa є: 

1) вхідні токени — послідовність вхідних елементів (токенів), отриманих пі-

сля попередньої обробки тексту (токенізації); 

2) шар вбудовувань (Embedding layer) — це шар, що перетворює кожен токен 

у відповідний вектор певної розмірності (hidden size), який слугує числовим подан-

ням значення та позиції токена; 

3) блоки кодувальника трансформера (×N) — основна частина моделі, яка міс-

тить N однакових блоків. Кожен блок включає три ключові компоненти: 

а) багатоголову самоувагу (Multi-Head Self-Attention) — це механізм, який 

дозволяє моделі одночасно звертати увагу на різні частини вхідної послідовності, 

порівнюючи кожен токен з усіма іншими; 

б) пряме з’єднання (Feedforward layer) — нейронну мережу, яка застосовує-

ться до кожного токена окремо, має одну приховану (проміжну) проєкцію розміром 

intermediate_dim (наприклад, 2048 у BERT-base), що дозволяє моделі краще вира-

жати складні залежності; 

в) нормалізацію шару та залишкові зв’язки — механізми, які стабілізують нав-

чання та пришвидшують його. Залишкові зв’язки допомагають уникнути втрати ін-

формації, а нормалізація — зменшує залежність від масштабів вхідних даних; 

4) шар агрегації або вихід [CLS]-токена — етап, на якому формується підсум-

кове подання всієї послідовності. Залежно від архітектури, застосовується один із 

варіантів: 

а) CLS-токен — спеціальний токен, який агрегує інформацію з усієї послідов-

ності (використовується в моделях: BERT, DistilBERT, RoBERTa); 

б) Pooling (усереднення/максимум) — агрегування ознак усіх токенів (вико-

ристовується в моделі XLM-RoBERTa); 

5) щільний (Dense) шар або кілька шарів для класифікації –— один або кілька 

повнозв’язних (Dense) шарів, які перетворюють вихід з трансформера на конкрет-

ний прогноз. 

До того ж, для навчання моделей було застосовано методологію, що базується 

на основі перевірочної підмножини. Вона полягає у тому, що весь доступний набір 

маркованих даних поділяється на такі частини, що не перетинаються, а саме: з на-

вчальної множини (training set) було виділено 20 % на перевірочну підмножину 

(validation subset), а решту — для тренування моделей-кандидатів [19]. 

Середовищем для навчання було обрано Google Colaboratory [20], тому що 

воно надає користувачеві (досліднику, розробнику) «в хмарі» апаратні ресурси тех-

нологій GPGPU та TPU, а також в ньому можна застосовувати всі наведені бібліо-

теки для машинного навчання. Так як в роботі присутні моделі, які мають більше 

100 млн параметрів, — існує потреба в значних обчислювальних ресурсах (проце-

сорному часі та особливо пам’яті) для їхнього тренування. Такі ресурси надає гра-

фічний адаптер NVIDIA A100, який є одним із найбільш потужних GPU, розробле-

ний для обчислень у сфері глибокого навчання, HPC (високопродуктивних обчис-

лень) і хмарних обчислень. Цей GPU часто використовується в Google Colab 
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Pro/Pro+, AWS, Azure, NVIDIA DGX-системах, а також у суперкомп’ютерах. Ос-

новні параметри наведено в табл. 6. 
 

Таблиця 6. Основні параметри графічний адаптера NVIDIA A100 

Параметр Значення 

Архітектура NVIDIA Ampere 

Кількість ядер CUDA 6912 

Кількість тензорних ядер 432 

Пам’ять 40 ГБ 

 

У додаток до вищезазначеного, під час використання платформи Google 

Colab було виявлено низку її переваг, що забезпечують ефективне середовище для 

розробки та навчання моделей машинного навчання, а саме: 

1) доступ до високопродуктивних графічних (GPU) і тензорних (TPU) проце-

сорів: використання апаратного прискорення значно скорочує час тренування мо-

делей глибокого навчання; 

2) хмарна інфраструктура: Google Colab функціонує у веб-браузері, що усу-

ває необхідність встановлення спеціального програмного забезпечення на локаль-

ний комп’ютер. Усі обчислення виконуються на серверах Google, а збереження да-

них і робочих документів здійснюється автоматично у хмарному сховищі Google 

Drive. Це полегшує керування проєктами та доступ до них з різних пристроїв; 

3) інтеграція з платформою GitHub: Colab дозволяє напряму відкривати, ре-

дагувати та зберігати вихідний код, розміщений у репозиторіях GitHub, що спро-

щує контроль версій і спільну розробку програмного забезпечення; 

4) зручні засоби спільної роботи. За аналогією з Google Docs, користувачі мо-

жуть ділитися своїми проєктами через посилання, надаючи іншим користувачам 

можливість перегляду або редагування в режимі реального часу. Такий підхід 

сприяє ефективній командній роботі, особливо у навчальних або науково-дослід-

них проєктах; 

5) попередньо встановлені бібліотеки для машинного навчання: Colab надає 

вбудовану підтримку найбільш поширених бібліотек, на кшталт, TensorFlow, 

Keras, PyTorch, Scikit-learn, Pandas, NumPy тощо. Це дозволяє миттєво розпочати 

реалізацію проєктів без додаткової підготовки середовища; 

6) інтерактивне програмне середовище на основі Jupyter Notebook: платфор-

ма підтримує покрокове виконання Python-сценаріїв, додавання текстових пояс-

нень, графіків і візуалізацій, що забезпечує зручність у дослідженні даних та екс-

периментальній розробці моделей; 

7) мультимовна підтримка: не зважаючи на те, що основною мовою програ-

мування є Python, Google Colab також дозволяє виконання сценаріїв іншими мо-

вами, такими як R, JavaScript, SQL тощо, що розширює сферу застосування плат-

форми; 

8) підтримка засобів для візуалізації даних: Colab сумісний із бібліотеками 

Matplotlib, Seaborn, Plotly та іншими, що дає змогу створювати якісні графіки та 

діаграми безпосередньо в середовищі блокнота; 

9) можливість тривалого навчання моделей: платформа підтримує безпе-

рервне виконання обчислень протягом тривалого часу, що є важливою перевагою 

під час навчання складних моделей, які потребують значного обсягу обчислень. 
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Оцінка методу забезпечення якості коментарів 

Для оцінки якості забезпечення коментарів до внесених змін систем конт-

ролю версій використано такі метрики [14]: 

1) доля правильних відповідей (Accuracy): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (10) 

де TP (True Positive) — вірні позитивні відповіді; 

2) TN (True Negative) — вірні негативні відповіді; FP (False Positive) — невір-

ні позитивні відповіді; FN (False Negative) — невірні негативні відповіді. 

3) доля вірних позитивних відповідей серед усіх позитивних відповідей кла-

сифікатора (Precision): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
; (11) 

4) доля вірних спрацювань на позитивних об’єктах (Recall): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; (12) 

5) середнє гармонійне (F1-score): 

 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. (13) 

 

Хоча варто врахувати, що для фільтра повідомлень про внесені зміни важли-

віша саме повнота (Recall), тому що краще відхилити повідомлення та порекомен-

дувати розробнику доповнити його або перефразувати. 

Отже, результати роботи створених моделей наведено у табл. 7. 
 

Таблиця 7. Порівняння ефективності побудованих моделей  

для імплементації фільтра повідомлень про внесені зміни 

№ 

за/п 
Модель 

Розмір 

пакета 
Accuracy F1-score Час навчання 

1 transformer-encoder 128 0.819 0.691 29 сек 

2 bert_tiny_en_uncased 128 0.814 0.689 2 хв 52 сек 

3 bert_small_en_uncased 128 0.199 0.166 6 хв 30 сек 

4 bert_medium_en_uncased 128 0.801 0.445 10 хв 35 сек 

5 bert_base_en_uncased 64 0.201 0.167 24 хв 14 сек 

6 bert_base_en 64 0.801 0.445 24 хв 6 сек 

7 bert_base_multi 64 0.801 0.445 24 хв 4 сек 

8 bert_large_en_uncased 16 0.799 0.444 1 год 15 хв 51 сек 

9 bert_large_en 16 0.801 0.445 1 год 14 хв 9 сек 

10 bert_tiny_en_uncased_sst2 128 0.802 0.648 3 хв 5 сек 

11 roberta_base_en 64 0.801 0.445 27 хв 40 сек 

12 roberta_large_en 16 0.801 0.445 1 год 18 хв 9 сек 

13 distil_bert_base_en_uncased 128 0.799 0.444 12 хв 39 сек 

14 distil_bert_base_en 128 0.799 0.444 12 хв 6 сек 

15 distil_bert_base_multi 128 0.799 0.444 12 хв 20 сек 

16 xlm_roberta_base_multi 64 0.801 0.445 25 хв 

17 xlm_roberta_large_multi 16 0.799 0.444 1 год 18 хв 32 сек 
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У процесі навчання моделей виникла необхідність коригування розміру па-

кета (batch size — обсяг даних, що обробляється моделлю за одну ітерацію під час 

тренування), оскільки обрані моделі характеризуються значною кількістю парамет-

рів, що унеможливлює їхнє повне завантаження в доступну пам’ять графічного адап-

тера обсягом 40 ГБ. 

 

Висновки 

Запропоновано низку підходів до реалізації фільтрації повідомлень щодо вне-

сених змін, що становить один із етапів процесу аналізу, обробки та формування 

вхідних даних. Зазначений фільтр слугує підготовчим компонентом для подаль-

шого застосування методу, здатного генерувати повідомлення про зміни на основі 

цих даних. 

Здійснено порівняльний аналіз провідних моделей сімейства BERT (зокрема, 

BERT, RoBERTa, DistilBERT і XLM-RoBERTa), а також спеціалізованої моделі, по-

будованої на основі традиційної кодувальної архітектури трансформера. 

Виконано оцінку побудованих фільтрів забезпечення якості описів до внесе-

них змін. З таблиці результатів (див. табл. 7) видно, що найкращі результати мають: 

transformer-encoder (точність 81,9 %, середнє гармонійне 69,1 %), 

bert_tiny_en_uncased (точність 81,4 %, середнє гармонійне 68,9 %) та 

bert_tiny_en_uncased_sst2 (точність 80.2 %, середнє гармонійне 64,8 %). 

Показано, що середовище Google Colaboratory є потужним інструментом для 

швидкого прототипування та розробки моделей машинного навчання. Завдяки 

своїм можливостям (GPU, TPU та інтеграції з хмарними сервісами) він стає одним 

із найбільш зручних інструментів для студентів, дослідників та інженерів програм-

ного забезпечення.  
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