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Лінійна модель транспортної задачі локації-релокації  
об’єктів у логістичній мережі 

 

Базовою платформою для моделювання задач стратегічного плануван-

ня логістичних систем обрано мережеву транспортну задачу (Trans-

shipment Problem, TSP), де проміжні пункти є потенційними місцями-

кандидатами на розташування специфічних об’єктів щодо їхнього ото-

чення. При поточному плануванні, зі зміною умов і значень вхідних пара-

метрів, здійснюється реконфігурація мережі шляхом релокації потен-

ціалів існуючих джерел. За кожним оновленим варіантом структури 

мережі, локацією існуючих і нових джерел і призначень до них клієнтів, 

відшукується оптимальний розподіл одно- чи багатопродуктових по-

токів, які течуть від джерел, через проміжні пункти до стоків. Наве-

дено постановку транспортної задачі location-relocation, її розв’язок за 

лінійною оптимізаційною моделлю отримано засобами Excel.  

Ключові слова: оптимізаційне моделювання в Excel, transshipment-loca-

tion/allocation/relocation problems, Location Science and Analysis, Spread-

sheet Modeling and Analytics. 

 

Вступ 

Перевагою моделі TSP, націленої на проблематику зміни потоків різного типу 

і властивостей у проміжних вузлах логістичних мереж і ланцюгів постачання, є охоп-

лення різних і важливих оптимізаційних задач з метою досягнення мінімальних ви-

трат, пошуку найкоротшого маршруту чи найменшої тривалості процесу, та, голов-

не, можливість оптимально розташовувати унікальні виробничі/сервісні об’єкти се-

ред оточуючих їх точок попиту та визначати оптимальні потоки між ними. У випад-

ках надзвичайних ситуацій карта локації і потенціалів джерел і відповідних потоків 

кардинально змінюється: окремі потоки вимушено посилюються, обмежуються чи 

блокуються, у певних вузлах розщеплюються чи зливаються. Через динамічний ха-

рактер логістики із-за змушеного переміщення (релокації) існуючих джерел кри-

тичних ресурсів і зміни розподілу сукупних потужностей із-за появи нових джерел 

об’єктивно змінюється конфігурація мережі, її вузли змінюють свої функції тощо. 
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Щоби оптимізаційна модель оперативно реагувала на ці зміни і відповідними роз-

рахунками могла точно виокремлювати вузькі місця для вироблення, аналізу та 

прийняття рішень, вона має бути лінійною, простою і швидкою завдяки доскона-

лому алгоритму. 

Сучасна міждисциплінарна локаційна наука, складова ORMS1, представляє 

специфічний аналітичний апарат математичного та комп’ютерного моделювання 

оптимізаційних потокових задач у логістичних мережах і ланцюгах постачання [4–

6, 8, 9]. З появою розвинених комп’ютерних та інформаційних технологій вона уза-

гальнила проблематику ланцюгів постачання, ставши активною та продуктивною 

галуззю глибоких досліджень і впроваджень відповідних результатів щодо розмі-

щення/переміщення потрібних об’єктів для обслуговування точок попиту якнайк-

раще, з урахуванням реальних умов, обмежень і бажаних критеріїв оптимальності. 

На початку 1960-х рр., за досягненим рівнем і досвідом оптимізаційних обчис-

лень задач математичного програмування із використанням комп’ютерів формує-

ться напрям практичних задач Facility Location Problem щодо оптимальної локації 

нових точок (серверів) для обслуговування заданих точок попиту клієнтів, як-от 

клас нелінійних задач location-allocation problem про оптимальну локацію зада-

ного/шуканого числа серверів, де кожна точка попиту має обслуговуватися одним 

сервером. У [3, 7] визначено клас дворівневих2 задач transportation-location/alloca-

tion problem, де підкреслена визначальна роль локації серверів для оптимального 

розподілу потоків за моделлю класичної (матричної) транспортної задачі лінійного 

програмування, де потенціали серверів обмежені фіксованими значеннями пропо-

зицій. У [3] використовується оригінальний гібридний алгоритм, де злагоджено  

діють дві покрокові оптимізаційні процедури ітераційного процесу: а) генерація не-

лінійним евристичним алгоритмом шуканих місць розташування серверів; б) онов-

лення матриці відстаней (як питомих витрат) і пошук оптимуму в лінійній транс-

портній моделі. Цей підхід став у нагоді в розробці оптимізаційної моделі дворів-

невої лінійної задачі transshipment-location/relocation problem, що і є предметом дан-

ної статті. 

У наступні періоди активного розвитку аналітичних засобів ORMS локаційна 

теорія за обсягами постановок задач і ефективністю реальних застосувань отрима-

них результатів суттєво підсилюється: на невпинні замовлення практики ставляться 

нові і специфічні планові задачі великого розміру і ускладненої структури, детермі-

новані та стохастичні, розробляються відповідні математичні моделі, що належать 

основним класам: p-Median Problems, p-Center Problems, Covering Problems та 

Location-Routing Problems [14]. Останньому класу належить визначальна роль щодо 

 
1 Operations Research and Management Science (ORMS) — сучасна область наукових знань, базується 

на математичних і аналітичних методах для вироблення й прийняття оптимальних рішень в різних 

сферах діяльності людства, інститут INFORMS — міжнародна асоціація фахівців-аналітиків, видає 

17 наукових журналів, у її складі Section on Location Analysis (www.informs.org) 
2 дворівнева оптимізаційна модель (optimization-optimization) — обчислювальна структура 

розв’язання двох спряжених і технологічно узгоджених оптимізаційних задач, внутрішньої і зовні-

шньої, «задача в задачі». Використовується для моделювання ієрархічних процесів вироблення та 

прийняття рішень в умовах визначеності (в умовах невизначеності використовується модель 

simulation-optimization). Застосування: ланцюги постачання, транспорт, збалансоване вироблення 

критичних ресурсів і їхній розподіл в умовах надзвичайних ситуацій, управління проєктами та проє-

ктними програмами [15] тощо  

http://www.informs.org/
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транспортної складової ланцюгів постачання, враховуючи їхній глобальний вимір, 

перевезення різними транспортними засобами, перевалку вантажів у вузлах-хабах 

(transshipment points) і значущість транспортних витрат [10].  

Кожна із цих задач зі специфічною цільовою функцією, застосовує великі на-

бори даних з їхніми різноманітними структурами, тут шукані змінні різного типу, 

наближені до реальних умов і обмежень на їхні значення, використання усіх відо-

мих модельних конструкцій, точних і наближених обчислювальних алгоритмів, що 

реалізуються потужними розподіленими обчислювачами, в навчально-дослідниць-

кій практиці та самоосвіті зазвичай застосовують розвинені та доступні програмні 

продукти — надбудови електронних таблиць [2, 11–13]. 

 

Транспортна задача з проміжними пунктами 

Узагальнена версія класичної транспортної задачі3 — мережева транспортна 

задача (МТЗ, Transshipment Problem, [1])4, де разом із джерелами та стоками є про-

міжні пункти (ПП) із фіксованим географічним розташуванням, зазвичай, це вузли-

хаби, де зливаються, розділяються та перетворюються потоки різного типу та влас-

тивостей. Джерела та стоки мають потенціали, пропозиції або попит, потенціали 

проміжних вузлів, це їхні власні пропозиції/попит. Саме ці вузли, з їхніми заданими 

позиціями, — за нашим підходом — потенційні кандидати на розміщення нових 

джерел. Головна перевага МТЗ у дискретній локації — відомі відстані між вузлами 

для кожної дуги, попередньо розраховані за їхніми координатами, що надає лока-

ційній моделі (часткову) властивість лінійності5. Локаційні обчислення базуються 

на розв’язанні оптимізаційних задач про потоки в мережах, де базовим обмеженням 

є баланс потоків у вузлі: сума потоків, що входять у вузол (Fвх), дорівнює сумі по-

токів, що виходять із вузла (Fвих), з урахуванням потенціалу вузла (пропозиція/по-

пит). На схемі мережі дуга зображується стрілкою, що з’єднує пару вузлів6, вістря 

стрілки, направлене у вузол-кінець, визначає вхідний дуговий потік, а її хвіст, з’єд-

наний з вузлом-початком, визначає вихідний дуговий потік, це використано у спис-

ку дуг табличної моделі. Список дуг заданий стовпцями: Початок, Кінець, Вага, По-

тік, список вузлів — стовпцями: Вузол, Обмеження (ЛЧ), Потенціал (ПЧ), формули 

для пошуку потоків (ліва частина у стовпці Обмеження): 

= SUMIF(Початок;Поточний вузол;Потік), обчислює суму вихідних потоків 

(Fвих);  

= SUMIF(Кінець;Поточний вузол;Потік), обчислює суму вхідних потоків 

(Fвх);  

права частина обмеження — задані потенціали вузлів.  

 

Приклад. 

Задана змішана мережева структура:  

— 5 вузлів-джерел (d1 … d5), їхні потенціали (діапазон D4:D8);  

 
3 мережева за походженням, у моделі представлена матрицями відстаней і потоків «кожен з кожним» 

розміром m × n (m, n — число вузлів-джерел і вузлів-стоків) 
4 у запропонованій моделі представлена списками вузлів та наявних дуг 
5 в існуючих локаційних моделях є ще вимога бінарного (0/1) типу змінних, і тоді модель нелінійна, 

типу MILP (Mixed Integer Linear Programming), використовує алгоритм переборного типу 
6 Excel підтримує наявність паралельних дуг між парами вузлів з різними напрямками і вагами 
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— 16 вузлів-стоків (p1 … p16), ), їхні потенціали (діапазон D9:D24);  

— 35 проміжних вузлів (1 … 35), ), їхні потенціали (діапазон D25:D59) та 169 

дуг між ними, діапазон (I3:L172). 

 

 
 

 
 

Рис. 1. Схема змішаної мережі та її вигляд 

 

Мета: визначити дугові потоки продукту «джерела – ПП – стоки» для забез-

печення попиту клієнтів за мінімальними транспортними/часовими витратами. 

Входи: потенціали: вузлів П(джерела), стоків П(стоки), проміжних пунктів 

П(ПП), вага (питомі витрати) дуг V = {v(п, к)}, п, к — початок/кінець дуги. 

Задача збалансована: Пропозиції = Попит = 1000 од. 

 

Математична модель 

Змінні рішень: Х = {xi}, i = 1 … 169, діапазон (L3:L172);  
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ЦФ: VX → min  

Обмеження:  

SUM(Fвих) = П(джерела),  

SUM(Fвх) = П(стоки),  

SUM(Fвих)-SUM(Fвх) = П(ПП),  

Х ≥ 0. 

Результат (рис. 2). 

 

 
 

Рис. 2. МТЗ: розподіл потоків «джерела-ПП-стоки» 

 

Аналіз результату 

Пряма задача: 

38 дуг мають ненульові значення, ЦФ = 15349,69 гр. од. 

Аналіз чутливості (двоїста задача)  

Тіньова ціна 18 проміжних пунктів менше нуля, їхні позиції — потенційні міс-

ця розміщення нових джерел, лідери: 35 (–10,5), 30 (–9,9), 1 (–9,1).  

 

Основний матеріал 

Суть цього дослідження — кількісне моделювання надзвичайної ситуації, 

коли наслідком послідовних і хаотичних зовнішніх впливів (атак) є поступове зни-

ження аж до ліквідації/релокації потенціалів існуючих джерел ресурсів, які спожи-
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ваються клієнтами згідно заданого попиту, щоразу доводячи систему розподілу об-

межених ресурсів до стану дисбалансу. 

Виходом із такої ситуації є: 

— релокація/компенсація заданих/втрачених потенціалів існуючих джерел; 

— визначення розрахунками локації нових джерел (серверів) у позиціях про-

міжних пунктів і їхніх потенціалів;  

— прив’язка (призначення) клієнтів до відповідних серверів; 

— оновлення змішаних потоків від існуючих і нових джерел до стоків.  

Для локаційної аналітики модель нестандартна, бо зазвичай учасників лока-

ційної задачі двоє: вузли-кандидати серверів і вузли-клієнти, у цій моделі прий- 

мають участь існуючі вузли-джерела, які разом з новими джерелами генерують і 

поставляють клієнтам за їхнім сталим попитом змінювані обсяги ресурсів для за-

безпечення балансу.  

Модель має дворівневу (двозадачну) організацію розв’язку модифікованої лі-

нійної задачі МТЗ7, на кожному кроці циклу (його довжина залежить від параметрів 

моделі): внутрішня задача (зі своїми змінними і обмеженнями) генерує поточний 

набір входів для формування обмежень зовнішньої задачі, в яку вони передаються 

(теж зі своїми змінними і обмеженнями) для отримання поточного оптимуму, про-

цес реалізується швидким і точним симплекс-методом.  

Отже, попередньо збудована статична модель МТЗ за цим підходом реалізує 

динамічну послідовність сценаріїв, за кожним сценарієм на кожному кроці обчис-

лювального процесу за кожною зміною значень впливаючого входу (як-от потенціа-

лу існуючого джерела) визначається дефіцит ресурсу, для його покриття формує-

ться відповідний результат: кількість, локація та потенціали нових об’єктів (дже-

рел), оновлені потоки та прив’язка клієнтів до відповідних серверів. За налашту-

ванням Solver’а можна отримати покроковий протокол для сценарного аналізу. 

 

Задача: Чи можна зміною значень потенціалів джерел  

знизити транспортні витрати? 

Підхід: діапазон, що містить раніше задані потенціали існуючих джерел, те-

пер визначено набором шуканих змінних внутрішньої задачі (Y), додано до набору 

шуканих потоків (Х). 

Дії: додати обмеження: сума змінних (Y) = сума попиту, додано до обмежень 

для вузлів. 

Таблична модель складається із: заданої ЦФ для задачі МТЗ і двох наборів 

шуканих змінних (X, Y) і обмежень для них. 

Результат.  

ЦФ = 14510,25 гр. од., система розподілу ресурсів структурована, складається 

із виокремлених зон обслуговування груп клієнтів кожним джерелом (рис. 3). 

 
7 клас задач BLPP (Bilevel Linear Programming Problem) [7] 
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Рис. 3. МТЗ: оновлений розподіл потоків від існуючих джерел до стоків 

 

Транспортна задача локації-релокації джерел 

Простір локації нових джерел — підмножина 35 проміжних вузлів мережі, 

оскільки критерієм оптимізаційної задачі є мінімум транспортних витрат, неявно і 

цілком логічно обґрунтовується, що ця модель одночасно визначає й мінімальну кі-

лькість нових джерел для покриття дефіциту ресурсу, необхідного для задоволення 

попиту, діючи «розумно»: нові джерела «туляться» до ближчих клієнтів, якомога 

зменшуючи відстані, а зменшення їхнього числа досягається якомога більшим зна-

ченням набутих потенціалів.   

Дії: попередньо визначений діапазон потенціалів проміжних пунктів тепер є 

набором шуканих змінних внутрішньої  задачі (Y); додати обмеження: сума потоків 

існуючих і нових джерел дорівнює сумі попиту. 

У наступних прикладах існуючі джерела послідовно виводяться з експлуата-

ції, дисбаланс зростає, для його компенсації релокацією дефіциту здійснюється 

операція location-allocation для нових джерел і клієнтів, потокова конфігурація сис-

теми розподілу ресурсу оновлюється. 

Початкове значення ЦФ = 14510,25. 
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Приклад 1.  

Релоковано джерело d1 (потенціал 50), дії: у клітинці D4 = 0. 

Результат 

Нове джерело в позиції ПП 34, розташований поруч клієнта р10, новий потік: 

Х(34, р10) = = 50, ЦФ = 13940,69. 

 

Приклад 2.  

Релоковано джерело d2 (потенціал 220), 

дії: в клітинці D5 = 0. 

Результат показано на рисунку. 

Додано 2 нових джерела:  

— у позиції ПП 6, розташований поруч клі-

єнта р12, новий потік Х(6, р12) = 45; 

— у позиції ПП 19, розташований біля клі-

єнтів р13 та р16, нові потоки: Х(19, р13) = 50 та 

Х(19, р6) = 125. ЦФ = 11264.02. 

 

Приклад 3.  

Релоковано джерело d3 (потенціал 340), 

дії: у клітинці D6 = 0. 

 

Результат 

Додано 4 нових джерела: 

— у позиції ПП 1, розташований поруч клієнта 

р8. Новий потік Х(1, р8) = 73; 

— у позиції ПП 5, розташований поруч клієнта р6. Новий потік Х(5, р6) = 50; 

— у позиції ПП 12, розташований поруч клієнта р5. Новий потік Х(12, р5) = 

= 67; 

— у позиції ПП 35, розташований між клієнтів р4, р7, р11.  

Нові потоки: Х(35, р4) = 50; Х(35, р7) = 39; Х(35, р11) = 50. 

Новий вузол 34 має оновлений потік Х(34, р1) = 11, сума 340 од. ЦФ = 8354,61. 

 

Приклад 4.  

Релоковано джерело d4 (потенціал 244), дії: в клітинці D7 = 0. 

Результат 

Додано 2 нових джерела: 

— у позиції ПП 8, розташований між клієнтами р3 та р14.  

Нові потоки: Х(8, р3) = 12; Х(8, р14) = 54; 

— у позиції ПП 11, розташований поруч клієнта р15. Новий потік: Х(11, 

р15)  = 167. 

Вузол 35 підсилив потік Х(34, р7) = 50 (був 39), сума 244 од. ЦФ = 6768,29. 

 

Приклад 5.  

Релоковано джерело d5 (потенціал 146), дії: в клітинці D8 = 0. 

Результат 

Додано 2 нових джерела: 
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— у позиції ПП 3, розташований поруч клієнта р2. Новий потік: Х(3, р2) = 23; 

— у позиції ПП 32, розташований поруч клієнта р9. Новий потік: Х(32, р9) = 

= 123. 

ЦФ = 5813,07 (рис. 4). 

 

 
 

Рис. 4. Повна компенсація/релокація потенціалів ресурсу існуючих джерел 

 

Аналіз результатів 

11 нових джерел отриманими потенціалами замінили/компенсували потенціа-

ли 5 існуючих джерел, ЦФ зменшила значення зі 14510 до 5813 гр. од. Модифікація 

моделі з метою адаптації до реальних умов складається із перегляду значень змін-

них (X, Y) оптимального плану уведенням додаткових обмежень як-от: заборона, 

корегування, призначення, комбінація значень тощо, із розумінням зростання транс-

портних витрат. 

 

3-продуктова мережева транспортна задача 

 

Приклад 6.  

Однопродуктова модель МТЗ може бути використана для роботи із р різними 

ресурсами, якщо р = 3, значить, таблична модель містить по 3 стовпці: обмежень і 

потенціалів для вузлів і потоків для дуг. Модель розташована на одному робочому 
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аркуші, розмір задачі: 612 змінних і 168 обмежень, використана надбудова 

OpenSolver. 

 

Отримано такий результат. 

 

 
 

3-продуктова транспортна задача локації-релокації джерел 

 

Приклад 7.  

Релоковано джерело d1 з потенціалами: А (195), В (100), С (100).       

Результат 

Додано 5 нових джерел у позиціях ПП: 1, 5, 19, 34 та 35, які розташовані поруч 

із клієнтами: р1, р6, р8, з10, р11, р13 та р16, відповідно. Потоками від них частково 

чи повністю задоволено попит цих клієнтів, ЦФ = 33645,83. 

 

Висновки 

Розроблено лінійну оптимізаційну модель на основі розв’язання мережевої 

транспортної задачі, яка в локаційній постановці щодо розміщення нових джерел 

для компенсації дефіциту ресурсу для покриття попиту клієнтів визначає їхнє міні-

мальне число, дискретне розміщення (у вузлах мережі) і потенціали разом з онов-

леними маршрутами від джерел до клієнтів. Модель досить просто реалізує додат-

кові завдання (як-от багатопродуктову постановку для розподілу потоків різних ре-

сурсів у транспортних коридорах), додавання обмежень (знизу/зверху) на значення 

шуканих змінних для її адаптації до реальних умов. Тип оптимізаційної моделі доз-

воляє наявними доступними інструментальними засобами реалізувати розв’язки 

досить крупних задач. Зокрема доведено, що в умовах релокації джерел/потенціалів 

мінімальне число нових джерел завжди розміщуються поруч/між вузлів клієнтів 

згідно визначеного критерію мінімізації транспортних витрат. Модель призначена 

для балансування розподільчої системи для повного задоволення попиту клієнтів в 

умовах дисбалансу.    
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