Применение полупроводниковых цифровых интерферометров в сверхплотной оптической записи информации и геофизических измерениях

Представлены результаты разработки и некоторые результаты исследования полупроводниковых цифровых интерферометров. Обоснована возможность их применения в наноизмерениях, в частности, при управлении лучем лазера в сверхплотной оптической записи информации, сейсмических измерениях и гравиметрии.

Ключевые слова: наноизмерения, цифровой интерферометр, управление наноперемещениями, оптическая запись информации, геофизические измерения.

Анализ состояния проблемы

В настоящее время лазерные интерферометры получили широкое распространение при наноизмерениях в различных отраслях науки и техники. Информация о перемещении объектов, в основном, получается путем аналоговой [1] или цифровой [2] обработки сигналов фотоприемников об интерференционных полосах. Ведущим разработчиком и производителем таких устройств является английская компания Renishaw [3]. Предлагаемые компанией интерферометрические измерительные системы основаны на использовании гелий-неоновых лазеров и обеспечивают проведение измерений на расстояниях до 80 м с разрешением не хуже 1 нм. При меньших расстояниях и использовании интерполаторов разрешение значительно улучшается. Если стоимость гелий-неоновых лазеров находится в пределах $10000, то готовая измерительная система у производителя на порядок дороже.

Необходимо отметить, что существует значительное количество приложений, где перемещения измеряются с высокой точностью, но в пределах 100 мм. Это касается микроскопии, сверхплотной оптической записи, сейсмометрии и гравиметрии. Особенно в последних двух случаях желательно иметь миниатюрную, пригодную для встраивания в существующие геофизические приборы, цифровую...
Интерферометрическую измерительную систему, которая характеризуется низкой энергоемкостью и стоимостью. Это позволило бы значительно уменьшить нижний предел частотного диапазона сейсмометров и получить качественно новые параметры дельтаГравиметров, что очень важно при проведении геофизических исследований [4]. Однако анализ известной научно-технической литературы свидетельствует об отсутствии таких интерферометрических измерительных систем.

Цель статьи является изложение принципов построения, проблемных вопросов и некоторых результатов исследования полупроводниковых цифровых интерферометров при их использовании в сверхплотной оптической записи информации и сейсмических измерениях.

Изложение основного материала исследования

В основу построения интерферометра положено классическое положение, которое сформулировано в следующем виде: каждой паре квадратурных сигналов интерферометра однозначно соответствует смещение в интервале 0…λ/2, где λ — длина волны лазера. Предварительно рассчитанные смещения записаны в матрицу соответствия и извлекаются после оцифровки квадратурных сигналов интерферометра. Очевидно, что после перехода смещения через λ/2 возникает неоднозначность (рис. 2). Индикатором появления неоднозначности является значительное (больше, чем на λ/4) изменение значения считанного из матрицы соответствия перемещения. При наличии таких изменений, соответственно знаку, происходит их учет, как показано в нижней части рис. 3.

Предлагаемый интерферометр использован в качестве измерительного элемента замкнутой системы радиального позиционирования луча лазера в станции лазерной записи оптической информации, разработанной в Институте проблем регистрации информации НАН Украины. Пример применения представлен на рис. 4.

Отдельным и важным направлением применения предлагаемого интерферометра могут быть геофизические приборы. Для сейсмометров, основанных на измерении скорости или ускорения и имеющих естественные проблемы в области низких частот, это приведет к измерению перемещений и распространению диапазона измерений практически до нулевых частот.
Применение полупроводниковых цифровых интерферометров в сверхплотной оптической записи информации и геофизических измерениях

Рис. 1. Обобщенная схема интерферометра с реальными сигналами квадратурных каналов

Рис. 2. К пояснению принципа устранения неоднозначности
Рис. 3. Структурная схема обработки информации в цифровом интерферометре

Рис. 4. Ошибки позиционирования станции лазерной записи оптической информации и их амплитудно-частотный спектр
Для экспериментального подтверждения работоспособности предлагаемых цифровых интерферометров в геофизических приборах был изготовлен макетный образец на основе вертикального сейсмометра SL-210 (рис. 5).

Рис. 5. Пример применения полупроводникового цифрового интерферометра в вертикальном сейсмометре SL-210

На рис. 6 приведены один из первых результатов измерения промышленного шума в г. Киеве.

По амплитудно-частотному спектру полученные результаты соответствуют типовым микросеймам промышленного шума.

Необходимо отметить, что если разработанный принцип получения цифровых отсчетов в интерферометре является общим для лазеров различных типов, то применение полупроводникового лазеров имеет свои особенности. В первую очередь это связано с необходимостью высококачественной стабилизации температуры и мощности для достижения стабильности частоты излучения полупроводниковых лазеров (рис.7) [1].

Из рис. 7 следует необходимость стабилизации мощности конкретного лазера на уровне 3…5 мВт и различные варианты его применения. Так, для проведения лабораторных или промышленных измерений температуру корпуса целесообразно стабилизировать на уровне 16, 20 или 25 °С, а для подземных сейсмических измерений — на уровне 9 °С.
Рис. 6. Примеры микросеймов промышленного шума: а) измерения в течение 10 с; б) участок с малыми вибрациями; в) частотное представление
Рис. 7. Влияние мощности излучения (а) и температуры (б) на параметры излучения полупроводникового лазера на примере лазерного диода HL 6312G

Результаты экспериментальных исследований показали, что температуру корпуса полупроводникового лазера достаточно стабилизировать с точностью не хуже 0,01 °C. Однако для получения точностей измерений на уровне единиц нанометров более высокие требования предъявляются к тепловому расширению самого корпуса интерферометра и измерительной системы в целом, учитывая их тепловую инерционность по отношению к параметрам среды. Это наглядно подтверждается экспериментальными результатами (рис. 8, 9). На рис. 8 приведены результаты измерения предлагаемым интерферометром при жестко закрепленных отражателях и практически стабильной среде измерения. Как видно из рис. 8, а за 6 минут абсолютная ошибка измерения не превысила 1 нм. При этом был специально выбран переходный режим системы стабилизации температуры корпуса лазера, при котором ошибка стабилизации температуры изменялась в пределах (–0,012…0,004) °C (рис. 8, б). На рис. 9 приведены результаты аналогичных измерений в относительно влажной среде при колебаниях температуры с амплитудой около 0,05 °C. О колебаниях температуры можно судить по ошибке стабилизации температуры корпуса лазера (рис. 9, б). При этом ошибка измерений менялась практически синфазно (рис. 9, а) и достигала 5 нм. Элементарные расчеты показывают, что основной причиной ошибки измерения явилось некомпенсированное тепловое расширение корпуса интерферометра.

Это свидетельствует о необходимости разработки прецизионных систем стабилизации температуры измерительной системы и контроллеров учета параметров измерительной среды.
Рис. 8. Результаты измерения в стабильной среде: а) относительное расстояние, нм; б) ошибка стабилизации температуры корпуса лазера, град.

Рис. 9. Результаты измерения в нестабильной среде: а) относительное расстояние, нм; б) ошибка стабилизации температуры корпуса лазера, град.
Выводы и направления дальнейших исследований

1. Предварительные результаты теоретических и экспериментальных исследований свидетельствуют о возможности применения предлагаемого полупроводникового цифрового интерферометра в сверхплотной оптической записи и геофизических измерениях.

2. Для доведения до промышленного применения предлагаемого интерферометра необходимо решить задачи прецизионной стабилизации температуры измерительной системы и учета влияния параметров среды на результаты измерений.

6. Пат. на кор. мод. 66878 Украина, МПК G01R 13/00, G01R 15/00. Високоширокий интерферометр на основі запам’ятовуючого пристрою / В.В. Петров, О.І. Брицкий, Ю.О. Бородін, В.О. Атаєв, М.В. Возленко; заявник та власник Ін-т проблем реєстрації інформації НАН України. — № u2011 07294; заявл. 09.06.2011; опубл. 25.01.2012, Бюл. № 2.

Поступила в редакцию 11.05.2012